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Abstract 

We determine the reproducing kernel for the classical Dirichlet space of the upper half plane, . 

Consequently, we establish the norm of the reproducing kernel and growth condition for functions in . 

Moreover, we extend the existing relationship between the reproducing kernels for the classical Dirichlet space 

and Bergman space of the unit disk to their counterparts of the upper half plane. 
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1. Introduction  

Let ℂ denote the complex plane. On , an open set, we define a Hilbert space of functions, denoted H. 

Then,  is deemed to be a reproducing kernel for H, denoted , , if it 

satisfies the following two properties: 

(i) belongs to the Hilbert Space H, and 

(ii) For all , we have the reproducing property:  

  

As a consequence, the reproducing kernel is Hermitian. Further details can be found in [2]. There is extensive 

research on the theory of reproducing kernels for spaces of analytic functions of the unit disk. However, the 

corresponding theory for the analytic spaces of the upper half plane is much less complete. In particular, in 

2020, Bonyo [5] determined the reproducing kernels for the Hardy space of the upper half plane and the 

weighted Bergman space of the upper half plane, while Adhiambo [1], in 2020, partially determined the 

reproducing kernel for the classical Dirichlet spaces of the upper half plane reproducing kernel in addition to the 

growth condition for functions in . 
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 Moreover, we extend the existing relationship between the reproducing kernels for the classical Bergman space 

and Dirichlet space of the unit disk to their equivalences on the upper half plane. 

2. Preliminaries 

Let  denote the unit disk. On  will represent the normalized area measure, and it is 

given as  for . We can generalize the area measure defined on . In 

particular, for each  and for , ,  represents the weighted measure on , and it is given 

as . It is apparent that if , . Let denote 

the upper half plane, and is the imaginary part of w. On this set, will represent the area measure. 

Likewise, we can generalize the area measure defined on . In particular, for each  and , 

 represents the weighted measure on . Also, for , . The Cayley 

transform  maps the unit disk conformally to the upper half plane with the inverse  

mapping the upper half plane conformally onto the unit disk. For more details, we refer to [6, 8]. For an open set 

, let denotes the space of analytic or holomorphic functions , that is,  

 

For more details, see [6, 8] and references therein. 

Let 1 ≤ p < ∞, then we define the Hardy space of the unit disk, , as 

 

while the Hardy space of the upper half plane, , is given as 

 

As noted in [4], H
p
-functions can be identified with their boundary values almost everywhere, and in that case, 

we have: 

(2.1) 

and 

(2.2) 
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For a comprehensive theory on Hardy spaces, we refer to [4, 5, 12]. 

For 1 ≤ p < ∞, , we define the weighted Bergman space of the unit disk, , as 

 

On the other hand, the weighted Bergman space of the upper half plane, , is given as 

 

2.1.Remark 

 When  in equation (2.3), we have the classical Bergman space of the unit disk. Consequently, when 

 in equation (2.4), we get the classical Bergman space of the upper half plane. 

Further details can be derived from [2, 5, 12]. 

For , the weighted Dirichlet space of the unit disk, , is given as 

 

where  is a seminorm on . 

There are two ways of transforming the seminorm, , into a norm: In the first case, we have: 

(2.5) 

and in the second case, we have: 

(2.6) 

On the other hand, the weighted Dirichlet space of the upper half plane, , is given as: 
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where  is a seminorm on . 

Likewise, there are two ways of transforming the seminorm, , into a norm. 

In the first case, we have: 

(2.7) 

and in the second case, we have: 

(2.8) 

2.2. Remark 

 We see that there are two ways of defining the norm on the Dirichlet space. It is for this reason that we have 

two cases of the weighted Dirichlet space, which are  and . In what follows, 

 will be denoted by while  by .  

When α = 0, we have the classical Dirichlet spaces, which shall be denoted by  and . Since we have two 

cases of the classical Dirichlet space, that is,  and , we have different reproducing kernels for each of 

these spaces. 

In particular, the reproducing kernel for  is given, in [10], as 

(2.9) 

for . On the other hand, the reproducing kernel for , in [1], is defined as 

 

for . The reproducing kernel for  is given in [3] as 

(2.10) 

for  . 

However, relative to , the corresponding reproducing kernel on the upper half plane in addition to its 

properties are not known. More on Dirichlet spaces can be found in [1, 3, 7, 9, 10]. 
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3. Reproducing kernel  

for  .  

Before determining the reproducing kernel for , we first give some preliminary results. Let  denote the 

classical Dirichlet Space and  the Cayley transform. The composition operator induced by , , is defined 

as ,  [1]. We determine some of the properties of the composition operator  in the 

following Proposition; 

3.1 Proposition  

 Let be the composition by ψ operator. Then 

(1)  is a linear operator. 

(2)  is bounded and hence continuous. 

(3)   is an isometry from . 

(4)   is invertible with inverse Cψ
−1 

= Cψ−1. 

(5)   is an isomorphism. 

(6)   is unitary. 

(7)  is an analytic map of . 

To prove (1), we see that , 

 

as desired, which proves (1). 

Next, we prove that  is bounded and hence continuous. We have that , 

 

Taking sup on both sides over all  with  , 

 

Thus,  is bounded, which implies that it is continuous. This proves (2). 
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For assertion (3), we prove that  is an isometry from , that is, 

 

Using the Cayley transform, we have that 

 

where  and , and therefore, 

. 

Also, we have  

 

Therefore,  

 

Next, we prove that  is invertible with inverse . 

Let  be the composition by operator and be the composition by operator. So, for , 

, and for ,  .  

As such, we have that, for , 

 

and, , 

 

Therefore, 
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as desired. 

For (5), we wish to show that is an isomorphism, that is, a surjective linear isometry. Cψ is linear by (1). Also, 

 is isometric by (3). Moreover,  is invertible by (4), which implies that  is bijective thus surjective. 

Next, we show that  is unitary, that is, , whence 

. 

Taking note that  is a Hilbert space, we have by the Riesz Representation Theorem that and, 

therefore, since . 

Now, since  is an isometry by (3), we have that for all f ∈ D(U), 

 

Thus 

(3.1) 

Using equation (3.1), for every f ∈ D(U) and g ∈ D(D), we obtain: 

 

which implies that and therefore , as desired. 

Finally, we prove that  is an analytic map of . 

 is conformal, and so in particular it is analytic. Hence, the composition f ◦ ψ is a composition of two analytic 

functions, which, therefore, is again analytic, which completes the proof. 

We can now determine the reproducing kernel for . 
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3.2.Theorem 

 The reproducing kernel for , is 

(3.2) 

. 

Proof. Let  and  be the reproducing kernels for  and respectively. The definition of the 

reproducing kernel for  is given in equation (2.10). We need to work out the reproducing kernel for .  

The Cayley transform  maps D onto U conformally with its inverse being .  is the 

composition operator induced by ψ. 

For each , and utilizing ,we have 

 

Now, we compute . Letting , we have 

 

Using the definition of ,  
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We now have 

 

As such,  

 

And thus, taking , for , we have 

 

Therefore,  

 

As a consequence, we determine the norm of the reproducing kernel in  given by equation (3.2). 

3.3.Corollary  

 Let  be as given in equation (3.2). Then 

.    (3.3) 

Proof. We know that 

 

From equation (3.2), we can rewrite  as: 
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Therefore, 

, 

as claimed. □ 

Now, we obtain the growth condition for functions in . 

3.4. Corollary 

 For every , we have 

(3.4) 

where  

Proof. Let . Then, by the reproducing property of , we have 

that 

 

Now, by the Cauchy-Schwarz Inequality, 

 

As such, 

. 

Therefore, using Corollary 3.3, we conclude that 
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as desired. □ 

Finally, we give the relationship between the reproducing kernels for  and . 

3.5. Corollary 

 We have the relation  

Proof. We know that 

(3.5) 

while 

(3.6) 

To confirm the relation between the reproducing kernels for the two spaces, we start by partially differentiating 

 with respect to  

 

Next, we differentiate  partially with respect to z, 

 

which implies that 

. 
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