https://ijfscfrtjournal.isrra.org/index.php/Formal_Sciences_Journal/index

Reporting Biogas Data from Various Feedstock

Abdulhalim Musa Abubakar^{a*}, Mujahid Umar Yunus^b

^aDepartment of Chemical Engineering, Faculty of Engineering, Modibbo Adama University (MAU), P.M.B 2076, Yola, Adamawa State, Nigeria ^bDepartment of Chemical Engineering, Faculty of Engineering, University of Maiduguri (UNIMAID), P.M.B 1069, Maiduguri, Borno State, Nigeria ^{*a}Email: abdulhalim@mautech.edu.ng*</sup> ^bEmail: mujahidumaryunus@gmail.com

Abstract

The knowledge of nutrient composition of specific substrate(s) for anaerobic digestion for the production of biogas can provide first-hand information on the possible outcome of digesting such feedstock. It will also help in planning the construction of large-scale biogas plants based on the awareness of the substrates output quantity of biodegradation products. This paper aims to present feedstock information, yield of the bioprocess and bioenergy capacity of products from anaerobic digestion for comparison, studies and analysis.

Keywords: Biogas yield; Bioenergy; Electricity generation; Biogas potential; Feedstock Type.

1. Introduction

Biogas is produced conventionally using fixed-domed digester, tubular or balloon bioreactor, floating drum reactor and fiberglass biodigester which is initiated by injecting organic waste feedstock to be degraded by anaerobic bacteria at suitable temperature and pH. Biogas is a colorless gas composed of majority of methane (CH₄) and carbon dioxide (CO₂) with small concentrations of other gases. Usually, substrates used for anaerobic digestion falls under either of agricultural, industrial or municipal waste. Often times in the literature, characteristics and biogas potential of single or multiple feedstock that had undergone anaerobic process are reported. Due to the fact that anaerobic digestion for biogas production is carried out at various conditions that gives desirable amount of product, literature information or results documented by researchers are most times insufficient. Despite the multitude papers and publications on diverse feedstock, work on anaerobic digestion for biogas production is still encouraged. Production of biogas can be done utilizing lots of organic waste feedstock as shown in Fig. 1. Few among these substrates are captured by this paper in Table 1, 3-5 and 8-9. It is a random data on the amount of heat, electricity, biofertilizer and biogas/biomethane potential of some selected feedstock based on known amount of substrate sample taken for digestion and percent dry matter, volatile solids and moisture content present.

* Corresponding author.

The tables reported mostly, manures, energy crops and crop waste excluding wastewater from industries such as textile, beverage, dairy, pharmaceutical and sugar industries. Chicken and bovine manure are among the highest most explored manures for anaerobic digestion. Table 2, 6 and 7 therefore singled out chicken manure for data fitting with model equations from Polymath regression software. Other poultry birds like duck and turkey are hardly given attention. Abdallah and his colleagues (2018)'s work on cow manure (a member of the cattle group – bovine) gives a methane yield in the range of 148-216 L CH₄/kgVS while that of Mohammed and his colleagues (2019) from paunch manure produces fairly considerable litres of biogas for the period of 49 days it was experimented. Though, a horse is capable of producing 50 kg of dung per day [1] from horses used for sports, work and leisure [2], it is less utilized for biogas production.

Figure 1: Some Feedstock for Anaerobic Digestion

The selection of organic substrate(s) for anaerobic digestion often depends on several factors which includes availability, nutrient content and quantity. Oat is among the most nutrient-dense foods with the benefit of controlling blood sugar, lowering cholesterol level, relieving constipation, reducing the risk of asthma in infants, skin care for reduction of inflammation, cleansing, moisturizing and soothing dry itchy skin, and the production of biogas. The challenges of the use of oat is that, it is a scarce material or feedstock which cannot serve a large scale production of biogas.

2. Biogas Feedstock and Biogas to Bioenergy Data

The product of anaerobic digestion of organic substrates are biogas and biofertilizer. Biofertilizer are used in farms for improved growth and bumper harvest of planted crops as alternative to chemical fertilizer. Biogas then goes to heat and electricity generation after been clean or refined via different types of treatment method to remove impurities and to make them a suitable substitute to natural gas. The feedstock of anaerobic digestion are often characterized to determine the carbon content, percent total solids, volatile solid percentage, ash

content, nitrogen level, moisture content among others to know the required level that will effectively produce the desired amount of biogas from the channeled feedstock. Sometimes available literature values of these compositions might be a reasonable guess to carryout anaerobic digestion of a particular feedstock.

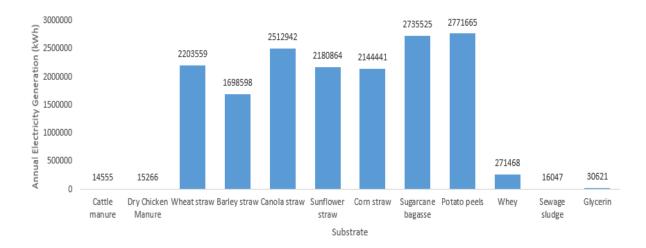


Figure 2: Substrate(s) Potential of Electricity Generation [3]

Operators of biogas plants serving the purpose of generating electricity would be interested in feedstock amount and compositions that is capable of generating high kilo-watt-hour of power if used as substrate (see Fig. 2). Different records of power output of some feedstock are presented in this paper. The largest generators of electricity from biogas is Europe followed by Asia. Biogas is still least exploited in Africa despite shortages in the generation of electricity in the continent. It will be very useful for rural areas in Africa to have biogas plants to meet their energy needs as majority of farmers there still depend on firewood. In the face of increased waste accumulation and the challenges with industrial scale production of biogas, many countries haven't develop interest to generate power from biogas, but are however, shifting to natural gas as alternative source of fuel [4]. As transportation fuel, biogas is widely used in Indian commercial buses to provide a cheaper means of urban transport to the populace. Table 1 presents heat, biofertilizer and biogas output of four (4) selected manures:

 Table 1: Annual Biogas Output Information from Manures [1]

Substrate	Amount (tons/yr)	Bio Natural Gas (m ³ /yr)	Electricity (kWh/yr)	Heat (kWh/yr)	Organic Fertilizer (tons/yr)
Chicken manure	7000	462000	1755600	2079000	6860
Cattle manure (straw bedding)	3500	164500	625100	740250	3430
Horse manure (straw bedding)	500	21500	81700	96750	490
Turkey manure (straw bedding)	2900	252300	958740	1135350	2842

Chicken manure is one of the most widely used substrate channeled for the production of biogas/biofertilizer. Renergon (2021) reported the amount per year of biogas that would be generated based on different weight of chicken manure. Using Polymath 6.10 Educational Release to perform polynomial regression of the chicken manure data in Table 2 gives equation 1:

$$BNG = a_0 + a_1 AF + a_2 AF^2 \tag{1}$$

where, BNG = bio natural gas generated per year; $a_0 = 3.262 \times 10^{-9}$, $a_1 = 66$, $a_2 = 3.413 \times 10^{-17}$ are dimensionless constant parameters; and AF = amount of feedstock (or chicken manure) fed in the anaerobic digester annually.

Bio Natural Gas (m ³ /yr)	Amount of feedstock (tons/yr)
264000	4000
363000	5500
719400	10900
422400	6400
178200	2700
950400	14400
752400	11400
844800	12800
204600	3100
125400	1900
92400	1400
547800	8300

Table 2: Biogas Yield based on Amount of Chicken Manure Sample [1]

Equation 1 is only valid for range of values of AF from 1400-14400 tons/yr. A table similar to Table 1 is Table 3. It is important to know the percent total solids (TS) as well as the percent volatile solid (VS) content of feedstock before anaerobic digestion as stated earlier. Table 3 is based on a constant minimum amount of feedstock of 30000 tons/yr and 5% contamination level. Total solids of eight feedstock with yearly methane yield had been presented graphically in Fig. 3(a) and (b) [3].

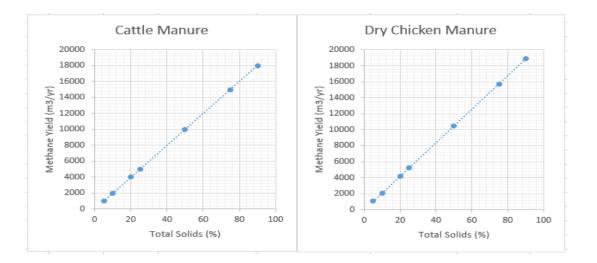


Figure 3(a): Cattle and Dry Chicken Manure Yield of Methane with Percent Total Solids

Fig. 3(a) and (b) can be used to estimate the biomethane yield of cattle manure, dry chicken manure, canola

straw, barley straw, wheat straw, sewage sludge, sunflower straw and corn straw based on the percentage total solid present in them and compared with the empirical values obtained experimentally. The plots are based on 100 tons/yr of substrates following similar trend with Fig. 2 and Table 5.

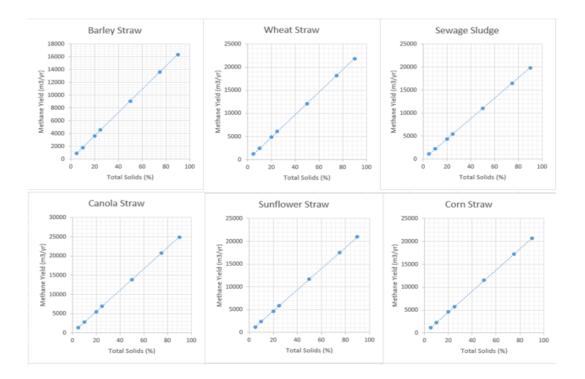


Figure 3(b): Methane Yield of Sewage Sludge and Crop Straws with Percentage Total Solids

Biogas yield are often presented in different units. The mathematical relationship (equation 2) [5] can interconvert the biogas yield in $(m^3/kg \text{ total weight})$ to $(m^3/kg VS)$ units:

Biogas yield
$$\left(\frac{m^3}{kg \, of \, waste}\right) = Biogas \, yield \, \left(\frac{m^3}{kg \, of \, VS}\right) \cdot TS(\%) \cdot VS(\%)$$
 (2)

Feedstock	%TS	%VS	BMP	Biogas Production	Electricity Production	Total Digestate (tons/yr)
				(m^{3}/yr)	(kWh)	
Chicken boiler	45	75	500	4809375	9476873	2268
Chicken layer	25	75	500	2671875	5264930	25267
Cow manure	25	80	450	2565000	5054333	25396
<i>Fat, oils and grease</i> (<i>FOG</i>)	36	84	1150	9911160	19529941	16507
Oat Hulls	90	87	242	5400351	10641392	21966
Pig manure	5	80	400	456000	898548	27948
Cheese whey	7	76	700	1061340	2091370	27216
WWTP sludge (5%TS)	5	80	350	399000	786230	28017
WWTP sludge (30%TS)	30	80	350	2394000	4717377	25603

Table 3: Biomethane Potential (BMP) of Various Feedstock [6]

Table 4 is the same as Table 3, only that it excludes the percent total solids and volatile solid there in the organic feedstock. More feedstock are reported compared to Table 3. Note that Table 4 is based on 100 tons/day of substrate.

Туре	Biogas (m ³)	Output	Electricity (kWt/h)	Generated	Heat (kWt/h	Production
Pig manure with litter	8390		1076		1113	,
Pig manure	7430		797		717	
Sheep manure	10800		1064		1101	
Cow manure	9000		806		834	
Horse manure	6300		619		557	
Hens manure	10000		1164		1205	
Turkey dung	14030		1407		1456	
Paunch manure	6050		595		535	
Soy peeling waste	51670		4877		5046	
Oat-flakes	61970		5938		6144	
Oat	50110		4855		5024	
Bran particles	26240		2383		2466	
Dry bread	48200		4558		4716	
Dairy wastes	67380		8145		8429	
Casein	56740		7022		7266	
Rape meal	49610		5313		5498	
Sunflower meal	48820		5360		5546	
Sunflower	59450		6761		6996	
Sunflower oil	122260		14889		15407	
Sugarbeet leaves ensilage	8820		859		889	
Sugarbeet	14710		1338		1385	
Haylage	20830		2018		2088	
Lucerne	14100		1384		1432	
Sudan grass ensilage	9800		923		955	
Wheat	59820		5657		5854	
Oil seed rape	64450		7583		7847	
Potato	17710		1618		1674	
Peas	58140		5727		5926	
Onion peel	26780		3117		3226	
Carrot	7330		681		613	
Cauliflower	5920		592		533	
Pumpkin	5090		487		576	
Glycerine	84570		7573		7837	
Linseed oil	122260		14889		15407	
Rape-seed oil	119760		14585		15092	

Table 4: Heat, Electricity and Biogas Output of Different Substrate [7]

Also be reminded that, based on Biteco (2019) and Table 4, 1 ton/day of hens' manure = 100 m^3 of biogas = 10 kWt/h of electricity generated and 13 kWt/h of thermal energy production. For cow manure, 1 ton/day is equivalent to 90 m³ of biogas which is equal to 7 kWt/h of electricity output and 9 kWt/h of thermal energy production. More so, 1 ton/day of sheep manure will give 108 m³ of biogas, 9 kWt/h of electricity and 12 kWt/h of heat. A fifth table (Table 5) gives heat, methane yield and electricity data based on McCabe (2017) for a constant % total solid of 25% and constant flowrate of feedstock of 100 tons/yr:

Туре	Methane	Electricity generation	Heat generation
	(m ³ /yr)	(kWh/yr)	(kWh/yr)
Cattle manure	5000	14555	21535
Dry Chicken Manure	5244	15266	22586
Wheat straw	627816	2203559	2059569
Barley straw	470368	1698598	1519419
Canola straw	715963	2512942	2348736
Sunflower straw	603914	2180864	1950813
Corn straw	593828	2144441	1918232
Sugarcane bagasse	779379	2735525	2556774
Potato peels	789675	2771665	2590553
Whey	93254	271468	401647
Sewage sludge	5513	16047	23743
Glycerin	10519	30621	45305

Table 5: Data Based on 100 tons/yr of Feedstock and 25% TS

Chicken manure had been distinctively taken from Table 2 for analysis with Polymath regression tool. Table 6 follows the same pattern, but here, amount of feedstock (AF), electricity generation (EG) and heat generation (HG) were taken as independent variable while methane yield (MY) is taken as the dependent variable for a constant total solid content of 60%.

Table 6: Chicken Manure Biogas Output Data for 60	0% TS [3]
---	-----------

Amount (tons/yr)	Methane (m ³ /yr)	Electricity (kWh/yr)	Generation	Heat (kWh/yr)	Generation
5	629	1832		2710	
10	1259	3664		5421	
18	2265	6595		9757	
35	4405	12823		18972	
56	7048	20517		30356	
70	8810	25646		37945	
80	10068	29310		43365	
100	12586	36638		54207	

The multiple nonlinear equation gives equation (3);

$$MY = a_0 + a_1 AF + a_2 EG + a_3 HG$$
(3)

where, the dimensionless constants, $a_0 = 0.0099882$; $a_1 = -396.5288$; $a_2 = 0.1724653$ and; $a_3 = 0.847122$, for range of AF = 5 - 100 tons/yr, EG = 1832 - 36638 kWh/yr and HG = 2710 - 54207 kWh/yr.

	Poultry dropping	S	Poultry litter	
Dry matter %	Biogas output	Biofertilizer	Biogas output	Biofertilizer
	(Nm ³ /kg)	(tons/yr)	(Nm ³ /kg)	(tons/yr)
5	0.02063	0.00005	0.01386	0.00005
10	0.04125	0.0001	0.02772	0.0001
20	0.0825	0.00018	0.05544	0.00019
25	0.10313	0.00022	0.0693	0.00023
30	0.12375	0.00026	0.08316	0.00027
50	0.20625	0.00038	0.1386	0.00042
80	0.33	0.00048	0.22176	0.00059

Table 7: Poultry Waste Biogas Output with %Dry Matter [8]

To convert 1 Nm³ to m³, multiply by 10^{-27} . Table 7 and 8 are from the same source, both reporting waste substrate(s) output of biogas, biofertilizer and other energy data with percent dry matter (DM) for 1 kg of feedstock. Similar table is seen in Table 3 and 9 but with different unit of the biogas production rate. The biogas output of poultry waste in Table 7 is directly proportional to %DM in the feedstock. Dry matter (DM) reflects the residual substance after complete elimination (drying) of water [9]. Common types of drying equipment for DM determination are forced air oven, Koster Tester, microwave, vortex dryer, food dehydrator and Near-Infrared Reflectance Spectroscopy (NIRS). To calculate DM of a feed, (i) weigh and record an empty container chosen to hold the material, (ii) put the material on the container and weigh them, i.e. container + sample weight, (iii) calculate the weight of the sample by subtracting weight of the container in (i) from the total weight in (iii), then place in a dryer, (iv) immediately after drying, weigh and record new weight of the container and material, (v) subtract the weight of the container from the weight in (iv) to know the weight of the material after drying and, (vi) divide the mass of the dry feed in (iv) by the mass of the wet material in (iii) and multiply by 100 [10]. These steps are further illustrated using Fig. 4. Mathematically,

$$\%DM = \frac{DW}{WW} \times 100 \tag{4}$$

where, DW = dry weight of sample and; WW = wet weight of original sample.

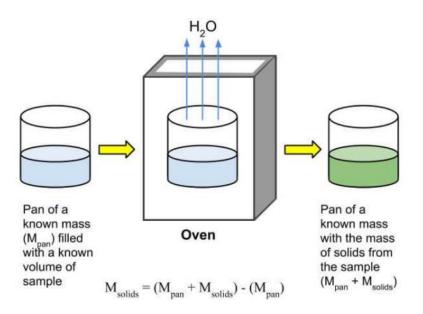


Figure 4: Procedure of Finding Total Solids Content in Water [11]

Dry matter content is simply referred to as total solids (TS) content. It is a term used for material left in a container after evaporation and drying of a sample at 103-105°C [12]. Moisture content is the amount of water present in the feedstock. The difference in the initial weight (WW) and final weight (DW) of the sample represents the amount of water in the sample [13]. %TS or %DM and % moisture are related using equation 5 and 6:

$$\% DM = 100 - \% Moisture$$
 (5)

$$\% Moisture = 100 - \% DM \tag{6}$$

Feedstock	Dry matter (%)	Biogas output (Nm ³ /kg)	Electricity output (kWh)	LPG Equivalent (kg)	Biofertilizer (tons/yr)	CO ₂ reduction (kg)	Slurry output (kg)	CH4 Content (%)
Cattle dung	18	0.05109	0.10787	0.02044	0.00017	39.53971	0.93869	55
Cattle manure	25	0.09	0.19	0.036	0.00022	69.6465	0.892	55
Poultry litter	38	0.10534	0.22238	0.04213	0.0003	88.92465	0.8736	60
Poultry droppings	28	0.1155	0.24383	0.0462	0.00024	97.5051	0.8614	60
Spent grains	26	0.13634	0.28784	0.05454	0.00022	113.18324	0.83639	59
Barley straw	86	0.31285	0.66046	0.12514	0.00054	220.09054	0.62458	50
Glycerin	98	0.686	1.44822	0.2744	0.00017	482.601	0.1768	50
Potato (whole)	22	0.099	0.209	0.0396	0.00019	73.82529	0.8812	53
Potato peelings	11	0.06783	0.1432	0.02713	0.0001	48.67306	0.9186	51

Table 8: Importan	t Biogas Data	Based on 1	kg of Feedstock [8]
-------------------	---------------	------------	--------------------	---

Skimmed milk	9	0.0626	0.13215	0.02504	0.00008	51.08274	0.92488	58
Grain maize	85	0.5814	1.2274	0.23256	0.00026	441.73609	0.30232	54
Maize silage	32	0.19853	0.41911	0.07941	0.00024	148.04431	0.76177	53
Horse manure	28	0.1176	0.24827	0.04704	0.00024	99.27792	0.85888	60
Turkey manure + straw	55	0.21038	0.44413	0.08415	0.00041	177.59858	0.74755	60
Rapeseed oil	99	1.19461	2.52195	0.47784	-0.00043	1142.9523 8	- 0.43353	68
Rapeseed straw	80	0.18725	0.3953	0.0749	0.00062	136.99813	0.7753	52
Rye meal	86	0.57792	1.22005	0.23117	0.00026	455.35473	0.3065	56
Sheep manure	30	0.02592	0.05472	0.01037	0.00029	20.05819	0.9689	55
Pig manure	23	0.09315	0.19665	0.03726	0.0002	78.63723	0.88822	60
Wheat	86	0.5719	1.20734	0.22876	0.00027	450.61145	0.31372	56
Wheat straw	86	0.29195	0.61634	0.11678	0.00056	209.49657	0.64966	51
Millet	31	0.15861	0.33484	0.06344	0.00026	104.21666	0.80967	46.7
Sugarbeet	19	0.14508	0.30628	0.05803	0.00016	101.4514	0.8259	49.7
Grape pomace	28	0.0603	0.12729	0.02412	0.00026	47.33862	0.92765	55.8
Cabbage leaves	13	0.06503	0.13728	0.02601	0.00012	50.32037	0.92197	55
Peanut bran	93	0.43524	0.91884	0.1741	0.00044	379.67726	0.47771	62
Glycerin	10	0.8415	1.7765	0.3366	-0.00001	591.99525	-0.0098	50
Whey	5	0.0345	0.07283	0.0138	0.00005	25.727	0.9586	53
Rumen content	15	0.06048	0.12768	0.02419	0.00014	46.80245	0.92742	55
Maize stalk	50	0.1275	0.26917	0.051	0.00042	93.2841	0.847	52

Percent DM or TS is not constant for a particular feedstock. Though there are standards in the literature for comparison of experimental results. For instance, Chastain and his colleagues (2001) compared the TS content of chicken manure with turkey manure where they found that %TS in broiler litter, roaster litter and breeder litter are 78.5, 77.5 and 66.5 respectively; a value approximately closer to turkey manure feedstock. A high total solids level indicates a high level of solid material in the liquid sample [11]. It has been demonstrated in Fig. 3 as well as Table 7, that as the %DM of a specific substrate increases, the biogas or methane output also increase. The amount of material capable of being digested depends on two variables: the TS content and the volatile solids (VS) content of the material added to the bioreactor. Although, %VS content of feedstock are often extracted from the literature by researchers, there exist a formulae for its computation. This is shown in equations (7) and (8):

$$\% VS (mg/L) = \frac{\text{weight of volatile solids}}{\text{weight of dry solids}} \times 100$$
(7)

%VS
$$(mg/L) = \frac{weight \ of \ dry-weight \ of \ ash}{weight \ of \ dry \ solids} \times 100$$
 (8)

Feedstock	Dry matter percent	Biogas Yield (m ³ /ton)
Cattle muck	10	36
Cow milk	13.5	115
Horse excrement	28	63
Pig muck	22.5	74.25
Poultry excrement	15	56.25
Sheep muck	30	108
Maize silage	33	205
Maize grain	87	590
Barley straw	86	312
Barley grain	87	579
Clover hay	86	419
Meadow hay	86	426
Oat straw	86	314
Oat grain	87	501
Rye grain	87	597
Wheat straw	86	292
Wheat grain	87	598
Wheat chaff	89	262
Wheat bran	88	437
Cauliflower	9.6	59
Fodder beet	96.5	715
Fodder carrot	14.6	90
Potato peeling	11	68
Sugar beet	23	147
Sour whey	5.6	37
Glycerin	100	846
Linseed oil	99.9	1223
Rapeseed oil	99.9	1198
Soya oil	99.9	1223
Sunflower oil	99.9	1223
Cheese waste	99.9	674
Old bread	65	482

Table 9: Dry Matter Percent of Various Feedstock with Biogas Yield [14]

Carbon-to-nitrogen (C/N) ratio is one of the most vital nutrients necessary for the decomposition of organic substrate to bio natural gas. Nitrogen content is measured using combustion method and Kjeldahl method (TKN). Opinion differs as to the best C:N ratio that is best for anaerobic degradation of waste organic substrate. Generally, a ratio from 25:1 to 30:1 is accepted as the best C/N ratio so far [15]. Table 10 presents 63 substrate materials with their C/N ratios:

Feedstock	C/N ratio	Feedstock	C/N ratio
Blood meal	43:13	Soybean stalk	33:1.3
Cow manure	12-25:0.6-1.7	Peanut shoots	20-31:0.6
Cow dung	16-25:1.8	Peanut hulls	31:1.7
Chicken dung	5-9.65:3.7-6.3	Peanut shells	35:1
Chicken manure	7-7.3:1-6.3	Potato peels	25:1.5
Poultry bedding	15:1	Potatoes	35-60:1
Poultry manure	5-15:1	Coffee grounds	14-25:1
Pugo	6.74:5	Nut shells	35:1
Waterlily	11.4:2.9	Sugarcane bagasse	140-150:0.3
Horse manure	20-50:1-2.3	Sugarbeet	35-40:1
Rabbit manure	17.9:1	Saw dust	200-600:0.1-1
Deer manure	25.72-30.06:1	Wood chips	25-50:0.1
Goat manure	10-20:1	Newspaper	50-200:1
Pig manure	6-12.5:1-3.8	Tissue paper	70:1
Sheep manure	13-33:1-3.8	Paper	170-173:1
Sheep dung	30-33:1	Cardboard	378:1
Elephant dung	43:1	Rice straw	51-67:0.6
Human excreta	8:1	Corn straw	50:0.8
Legume Hay	17-40:1-2.5	Corn stalk	56.6-75:1-1.2
Нау	12.5-25:1-4	Corn cobs	49.9-123:1
Lucernes	16.6:2.8	Wheat straw	50-150:0.5-1
Algae	75-100:1.9	Oat straw	48-70:0.5-1.1
Cabbage	12.5:3.6	Rye straw	82:1
Tomatoes	12.5:3.3	Silkworm	11.28:1
Alfalfa	12:1	Humus	10:1
Clover	23:1	Sludge	6:1
Mushroom residue	21.96-23.11:1	Hog	13.7:2.8
Grass silage	10-20:1	Carabao	23.1:1.6
Mulberry leaves	14.85:1	Peat moss	58-60:1
Water hyacinth	25:1	Pine needles	60-100:1
Seaweed	70-79:1-1.9	Hairy vetch	11:1
Mustard (runch)	25:1.5		

Table 10: C/N Ratios of Different Feedstock [15]- [16]

3. Conclusion

This work did not report the amount of all nutrient content in feedstock for anaerobic digestion. Essential output data on codigestion of multiple feedstock were not presented too. Also, not all substrates for anaerobic production of biogas were captured. Again some of the data tables appears to be the same. Notwithstanding, this article hopes to provide some relevant data for researchers to compare their empirical biogas data for accuracy and analysis.

Acknowledgement

BIOGASWORLD, a Canadian knowledge-based company, known for supporting biogas projects worldwide and sharing commercial and technical information to biogas industries, individuals and researchers across the globe, is acknowledged for mailing important information, some of which are presented in this work. BITECO BIOGAS Company founded in 2013 and based in Ukraine and Italy is also acknowledged for mailing bioenergy and biogas output data requested, as they specializes in turnkey construction of state-of-the-art biogas plants in Europe, Asia and CIS countries.

References

- Renergon, "Biogas Calculations: Quick & Easy Real Time Simulation," Anaerobic Digester Calculator, 2021. [Online]. Available: renergon-biogas.com/en/anaerobic-digestion-calculator. [Accessed 17 September 2021].
- [2] A. Hadin, Anaerobic Digestion of Horse Manure-Renewable Energy and Plant Nutrients in a Systems Perspective, Gavle: Gavle University Press, 2016, p. 54.
- [3] B. McCabe, "Calculator for Australian Biogas," Centre for Agricultural Engineering (CAE), University of Southern Queensland (USQ)-Research, 2017. [Online]. Available: biogas.usq.edu.au/calculator/#!/calculate. [Accessed 19 September 2021].
- [4] A. Z. Abdul and A. M. Abubakar, "Potential Swing to Natural Gas-Powered Electricity Generation," *International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT)*, vol. 10, no. 1, pp. 27-36, 2021.
- [5] NRREP, Biogas Calculation Tool-User's Guide, Nepal: Alternative Energy Promotion Centre-NRREP, 2014, p. 98.
- [6] BiogasWorld, "Biogas Calculations," BiogasWorld Media Inc, 2021. [Online]. Available: biogasworld.com/biogas-calculations. [Accessed 23 September 2021].
- [7] Biteco, "Biogas Calculator," Biteco Biogas Ltd, 2019. [Online]. Available: biteco-energy.com/biogascalculator. [Accessed 23 September 2021].
- [8] A. R. Shukla, "Biogas App," Indian Biogas Association (IBA), 2017. [Online]. Available: https://biogasindia.com. [Accessed 20 September 2021].
- [9] R. Braun, P. Weiland and A. Wellinger, Biogas from Energy Crop Digestion, IEA Energy, 2007, p. 20.
- [10] T. Nennich and L. Chase, "Dry Matter Determination," United States Department of Agriculture (USDA)-Natural Resources Conservation Service (NRCS) CIG, 16 August 2019. [Online]. Available: https://dairy-cattle.extension.org/dry-matter-determination/. [Accessed 24 September 2021].
- [11] Corrosionpedia, "Total Solids," Janalta Interactive, 30 December 2020. [Online]. Available: www.corrosionpedia.com/definition-1106-total-solids-water-treatment. [Accessed 25 September 2021].
- [12] S. Murphy, "General Infromation on Solids," City of Boulder/USGS Water Quality Monitoring, 2007.
- [13] J. K. Bernard, "Measuring the Dry Matter Content of Feeds," The Univesity of Georgia (UGA) Extension, 2013. [Online]. Available:

https://extension.uga.edu/publications/detail.html?number=SB58&title=Measuring%20the%20Dry%20 Matter%20Content%20of%20Feeds. [Accessed 20 September 2021].

- [14] G. Redman, *The Anaerobic Digestion Economic Assessment Tool Version 2.2*, Nottingham Street: The Andersons Centre, 2010.
- [15] COC, "The Carbon : Nitrogen Ratio in Composting," Home and Community Composting, 2021.[Online]. Available: www.carryoncomposting.com/416920203. [Accessed 25 September 2021].
- [16] K. Hagos, J. Zong, D. Li, C. Liu and X. Lu, "Anaerobic Co-digestion Process for Biogas Production: Progress, Challenges and Perspectives," *Renewable and Sustainable Energy Reviews*, vol. 76, pp. 1485-1496, 2017.
- [17] M. Abdallah, A. Shanableh, M. Adghim, C. Ghenai and S. Saad, "Biogas Production from Different Types of Cow Manure," *Advances in Science and Engineering Technology International Conferences* (ASET, pp. 1-4, 2018.
- [18] M. K. Mohammed, G. A. Gasmelseed and M. H. Abuuznien, "Production of Biogas from Cattle Paunch Manure," *European Journal of Engineering Research and Science (EJERS)*, vol. 4, no. 4, pp. 1-3, April 2019.
- [19] Energypedia, "Nitrogen-Content and C/N-ration of Organic Substrates," 20 January 2015. [Online]. Available: energypedia.info.wiki/nitrogen-content-and-C-N-ratio-of-organic-substrates. [Accessed 1 September 2021].
- [20] J. P. Chastain, J. J. Camberato and P. Skewes, "Poultry Manure Production and Nutrient Content," in *Nutrient Content of Livestock and Poultry Manure*, vol. 32, Clemson University, 2001, p. 17.
- [21] Homestead, "C:N Ratios of Common Organic Materials," Homestead on the Range, 27 August 2018.
 [Online]. Available: homesteadontherange.com/2018-08-27-cn-ratios-of-common-organic.materials.
 [Accessed 19 September 2021].
- [22] PNRC, "Carbon-to-Nitrogen Ratios," Planet Natural Research Centre: An Elite Cafemedia Lifestyle Publisher, 2021. [Online]. Available: www.palnetnatural.com/composting-101-making-c-n-ratio. [Accessed 25 September 2021].
- [23] L. Malgorzata and J. Frankowski, "The Biogas Production Potential from Silkworm Waste," Waste Management, pp. 564-570, 2018.
- [24] H. Wang, J. Xu, L. Sheng and X. Liu, "Effect of Addition of Biogas Slurry for Anaerobic Fermentation of Deer Manure on Biogas Production," *Energy*, vol. 165, pp. 411-418, 2018.
- [25] M. R. Atelge, D. Krisa, G. Kumar, C. Eskicioglu, D. D. Nguye, S. W. Chang, A. E. Atabari, A. H. Al-Muhtaseb and S. Unalan, "Biogas Production from Organic Waste:Recent Progress and Perspectives," *Waste and Biomass Valorization*, vol. 11, pp. 1-22, 2018.
- [26] M. C. Caruso, A. Braghieri, A. Capece, F. Napolitano, P. Romano, F. Galgano, G. Altieri, F. Genovese, S. Agrarie and A. Ambientali, "Recent Updates on the Use of Agro-food Waste for Biogas Production," *Applied Sciences*, vol. 9, no. 6, pp. 1-29, 2019.