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Abstract 

Bayesian optimal designs for count responses analyzed with Poisson regression describing a linear health effect 

are considered. To overcome the problem of dependence of Bayesian designs on the choice of prior 

distributions, Bayesian D & A-optimal designs are proposed for Poisson regression models. The results showed 

that the optimal number of time points depends on the subject-to-measurement. Also, Bayesian D & A-optimal 

designs are highly efficient and robust under models considered when implementing the efficiencies of designs 

with the Bayesian D- & A-optimal designs in modelling students’ academic performance. The best design is 

found in one out of ten tries. 

Keywords: Bayesian Poisson Regression; D-Optimality; A-Optimality; Efficiency. 

1. Introduction 

Experimental Design is a technique for the concept of a priori, taking place before data is collected, and hence 

the Bayesian paradigm is a particularly appropriate approach to take. Bayesian methods allow available prior 

information on the model to be incorporated into both the design of the experiment and the analysis of the 

resulting data, and produce posterior distributions that are interpretable by scientists. They also reduce reliance 

on unrealistic assumptions and asymptotic results that may be inappropriate for small to medium-sized 

experiments. The Bayesian approach to design enables realistic and coherent accounting for the substantial 

model and parameter uncertainties that usually exist before an experiment is performed and it is also a natural 

framework for sequential inference and design.  

------------------------------------------------------------------------ 
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An important problem where Bayesian methods can have substantial impact is optimal design for linear 

modelling, which relies on some prior information being available about the unknown values of the model 

parameters. Atkinson and his colleagues [2]. 

A Bayesian approach relaxes the requirement of locally optimal design criteria to specify particular values of the 

parameters. Fully Bayesian design, predicated on using the posterior distributions for inference, is also less 

reliant on the asymptotic assumptions that underpin most classical design for generalized linear models. Until 

very recently, optimal Bayesian design has not evolved far from the methods reviewed by Chaloner and 

Verdinelli [5]. Development and application of methods for Bayesian design have lagged behind the progress 

made in inference and modelling due to the additional complexity introduced by the need to integrate over the 

(as yet) unobserved responses, in addition to unknown model parameters. Hence, methodology has been 

restricted to simple models and fully sequential, one-point-at-a-time, procedures. Ryan and his colleagues [4]. 

Design of Experiments for count responses are very important in biological and clinical trials. Discussion of the 

non-Bayesian design for Poisson regression models can be found in Finney [2]. However, a design optimal to a 

best guess may not be efficient for parameter values close to the best guess so that the design is not quite robust 

to the parameter misspecification. Reference [6] examined the Bayesian optimal design for the one-variable 

Poisson regression model using the Nelder-Mead algorithm [44]. However, since the Nelder-Mead algorithm is 

a local-optimization method, the selection of starting design points has great influence on the performance of the 

procedure in getting to the global optimum. Furthermore, it would be much less efficient to use this algorithm 

for multi-variable nonlinear regression models. Here, the Bayesian optimal design approach is proposed for 

multiple Poisson regression models. 

2. Materials and Methods 

Bayesian D-Optimal Design for Poisson Regression Models 

Poisson regression model is similar to regular multiple regression except that the dependent (Y) variable is an 

observed count that follows the Poisson distribution. Thus, the possible values of Y are the nonnegative integers: 

0, 1, 2, 3, and so on. It is assumed that large counts are rare. Hence, Poisson regression is similar to logistic 

regression, which also has a discrete response variable. However, the response is not limited to specific values 

as it is in logistic regression. Counted data are often modeled using a Poisson model. The Poisson generalized 

linear model, often called the Poisson regression model, which is very useful in modelling counts, is widely 

used in biological and clinical experiments, assumes that y is Poisson with mean   (and therefore variance  ). 

The link function is typically chosen to be the logarithm, so that log .X   the fundamental Poisson 

regression model for an observation i is written as 
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the unknown parameters are involved in the Fisher information matrix; thus, the D-optimal design is dependent 

on the parameter values for the Poisson regression model. In order to find and to implement the D-optimal 

design, the model parameter values should be known. However, in most situations, the parameter values are 

unknown so that a guess to the true values is needed. When the guesses are not so close to the true parameters, 

the design that resulted from those guesses may not be optimal. Hence the design may not be quite robust to the 

parameter misspecification, Wang and his colleagues [45]. 

Wang and his colleagues [49] presented the D-optimal design and sequential design results for Poisson 

regression model using the non-Bayesian design approach. However, the robustness of the non-Bayesian 

optimal design is a problem when the model is misspecified. Design optimality criteria can be used to select a 

set of experimental conditions with optimal properties. Suppose a generalized linear model is expressed as 

   TE y f x        . . . (2) 

Further, suppose an experiment is to be designed by choosing n values of the design variables x  from an 

experimental region X . At each value of ix , for 1,2,...,i n , an independent observation iy  will be 

observed. Denote by   the design measure,  1,...,
T

ny y y  the total data,  1,...,
T

p    the unknown 

parameters, and  ,i ip y x  the density function of observation iy  

Under certain model assumptions and design optimality criteria, the X  that maximizes the Fisher information 

about the unknown   is selected. This is usually done by choosing the X  to optimize a certain function of the 

expected Fisher information matrix, 
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    . . . (3) 

When the model of interest is nonlinear or when a nonlinear function of the coefficients of a linear model is of 

interest, the experimental design is usually more difficult to deal with, since in such cases, the information in (2) 

usually depends on the unknown parameters which cannot be separated as a simple multiplier. In non-Bayesian 

designs, it is common to replace the parameters in (2) that cannot be separated as a data-independent multiplier 

replaced by initial guesses. Hence when the guesses are not so close to the true parameters, the design that 

results from those guesses may not be optimal. 

In the Bayesian optimal-design approach, the initial guesses do not concentrate on single values. Instead, each 

parameter is assigned to a prior distribution that may center around the guessed value. The optimality criterion is 
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to minimize the Bayes risk in which the parameters are integrated out in the risk function using the prior 

distributions.  

For generalized linear models, since the exact posterior distributions are often intractable, asymptotic 

approximations may be used Chaloner and Larntz [42]. The normal approximation to the posterior distribution 

is commonly used. Several normal approximations are available in Berger. Under easily satisfied assumptions, 

one approximation to the posterior distribution of   is to use a multivariate normal distribution 

   

1

, ,pN I  


   
  

  

 

where 


 is the maximum likelihood estimate of  . A further approximation using the prior distribution of   

as the predictive distribution of 


 will be applied to obtain the preposterior expected loss Chaloner and Larntz 

[41]. 

The two commonly used optimality criteria for Bayesian design are Bayesian D-optimality and Bayesian A-

optimality. The Bayesian D-optimality criterion is to use the expected gain in Shannon information between the 

posterior and prior distribution as the utility function and choose the design measure   maximizing equation 

(3) where det stands for the determinant and 
 is the prior distribution of  . In the Bayesian A-optimality 

criterion, which requires that the parameters to be estimated are specified and possibly weighted, we minimize 

equation (3) where tr(C) is the trace of matrix C and  A   is a symmetric p p  matrix provided by the 

specification of what is to be estimated. 

Information Matrices for Poisson Models 

For a design measure, X, on Y putting ip  weight at k distinct design points ix , i = 1, · · · k, .in    In 

general, the Fisher
 
information matrix  ,I X  for the generalized linear regression model can be written as 
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where xi is a p × 1 design vector of the i
th

 design points,  

For the one-variable poisson regression model, the Fisher information matrix can be written as 
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while for the two-variable logistic regression model, the Fisher information matrix can be written as 
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Bayesian A-Optimal Design for Poisson Regression Models 

Under certain model assumptions and design optimality criteria, the X  that maximizes the Fisher information 

about the unknown   is selected. This is usually done by choosing the X  to optimize a certain function of the 

expected Fisher information matrix, 

 
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We examin

e

 the Bayesian D-optimal design for some poisson models. The Bayesian D-optimality is given by; 

      1 log det ,Y E I Y
 

            … (8) 

which selects the design measure X maximizing  1 Y . We also examine the Bayesian A-optimal design for 

some poisson models. The poisson regression model is very useful in modelling the count data, equation (1) is a 

generalized linear model with unknown parameters in the information matrix. The Bayesian A-optimality is 

given by; 

        1

2 ,Y E tr A I Y
 

  
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 
      … (9) 

which selects
 
the design measure X maximizing  2 Y . Assuming that the expe

r
imenter doesn’t have much 

knowledge about the parameters, a range of uniform and independent prior distributions for the parameters are 

used to find the Bayesian optimal design points. 

Efficiency of the Bayesian D-Optimal Design 

The goal of the Bayesian D-optimal design is to find design points at which the determinant 

of the Fisher information matrix evaluated at the true parameter values is maximized. The 

D-efficiency is defined as the ratio of the determinant of the Fisher information matrix with the chosen design 



International Journal of Formal Sciences: Current and Future Research Trends (IJFSCFRT) (2022) Volume 13, No  1, pp 22-40 

27 
 

points to that with the true D-optimal design points at the true parameter values, i.e., 

 
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Efficiency of the Bayesian A-Optimal Design 

The goal of the Bayesian A-optimal design is to find design points at which the trace of the Fisher information 

matrix evaluated at the true parameter values is maximized. The A-efficiency is defined as the ratio of the 

determinant of the Fisher information matrix with the chosen design points to that with the true A-optimal 

design points at the true parameter values, i.e., 

 
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3. Results 

Likelihood:  

  CGPA ~ poisson(xb_CGPA) 

 

Prior:   

{CGPA:AGE STUDY INTERNET SLEEP LIVING _cons} ~ normal(0,10000)           (1) 

------------------------------------------------------------------------------  

(1) Parameters are elements of the linear form xb_CGPA. 

 

Bayesian Poisson regression                         MCMC iterations     =     12,500 

Random-walk Metropolis-Hastings sampling           Burn-in                    =      2,500 

                                                     MCMC sample size      =     10,000 

                                                     Number of obs              =      300 

                                                     Acceptance rate            =      .1828 

 Y1
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                                                     Efficiency:  min            =     .02325 

                                                                 avg            =    .03809 

Log marginal likelihood = -564.18065             max            =   .05763 

------------------------------------------------------------------------------  

             |                                                Equal-tailed 

        VAR |       IRR     Std. Dev.     MCSE      Median   [95% Cred. Interval] 

-------------+---------------------------------------------------------------- 

         AGE |     .9984969    .0082223   .000452    .9982041     .982632    1.01407 

       STUDY |  .9933854    .0077997   .000485    .9930523    .9787901   1.009298 

    INTERNET .9957648    .0083724    .00043    .9951907    .9798274   1.013192 

       SLEEP |    .9990856    .0081169   .000338    .9986993    .9831727   1.015592 

      LIVING |  1.006449    .0398522   .002613    1.004643    .9277565   1.090451 

       _cons |     4.013821    1.048096   .046447    3.859159    2.406909   6.408838 

The OPTEX Procedure 

Table 1 

Factor Ranges 

Factor Low Value High Value 

x1       -1.000000 1.000000 

x2 -1.000000 1.000000 

x3 -1.000000 1.000000 

x4 -1.000000 1.000000 

x5 -1.000000 1.000000 

x6 -1.000000 1.000000 

x7 -1.000000 1.000000 

x8 -1.000000 1.000000 

x9 -1.000000 1.000000 

 

The OPTEX Procedure 
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Table 2 

Design Number D-Efficiency A-Efficiency G-Efficiency Average Prediction Standard Error 

1 99.8014 99.6019 98.1318 0.3845* 

2 99.7854 99.5697 98.0099 0.3846 

3 99.7799 99.5598 97.8837 0.3846 

4 99.7761 99.5520 98.3159 0.3846 

5 99.7729 99.5466 98.4162 0.3846 

6 99.7706 99.5408 98.0497 0.3846 

7 99.7591 99.5191 98.4355 0.3847 

8 99.7546 99.5100 98.0490 0.3847 

9 99.7533 99.5060 97.9757 0.3847 

10 99.7510 99.5011 97.9052 0.3847 

The GLM Procedure 

Table 3 

General Form of Aliasing Structure 

Intercept 

x1 

x2 

x3 

x4 

x5 

x6 

x7 

x8 

x9 

x1*x2 

x1*x3 

x2*x3 

x1*x4 

x2*x4 

x3*x4 

x1*x5 

x2*x5 

x3*x5 

x4*x5 

x1*x6 

x2*x6 

x3*x6 

x4*x6 

x5*x6 

x1*x7 

x2*x7 

x3*x7 
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General Form of Aliasing Structure 

x4*x7 

x5*x7 

x6*x7 

x1*x8 

x2*x8 

x3*x8 

x4*x8 

x5*x8 

x6*x8 

x7*x8 

x1*x9 

x2*x9 

x3*x9 

x4*x9 

x5*x9 

x6*x9 

x7*x9 

x8*x9 

The GLM Procedure 

Dependent Variable: y 

Table 4 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 45 5.12359391 0.11385764 1.42 0.0510 

Error 254 20.41040795 0.08035594     

Corrected Total 299 25.53400186       

  

 

Table 5 

   

R-Square Coeff Var Root MSE y Mean 

0.200658 55.79938 0.283471 0.508019 

 Table 6   

SOURCE DF TYPE I SS MEAN SQUARE F VALUE PR > F 

X1 1 0.04964580 0.04964580 0.62 0.4326 

X2 1 0.07427179 0.07427179 0.92 0.3373 

X3 1 0.10984251 0.10984251 1.37 0.2434 

X4 1 0.28201230 0.28201230 3.51 0.0622 

X5 1 0.12803773 0.12803773 1.59 0.2080 

X6 1 0.52375595 0.52375595 6.52 0.0113 
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X7 1 0.03863451 0.03863451 0.48 0.4887 

X8 1 0.00420088 0.00420088 0.05 0.8193 

X9 1 0.00235324 0.00235324 0.03 0.8643 

X1*X2 1 0.22017450 0.22017450 2.74 0.0991 

X1*X3 1 0.43775739 0.43775739 5.45 0.0204 

X2*X3 1 0.00247002 0.00247002 0.03 0.8610 

X1*X4 1 0.01424717 0.01424717 0.18 0.6741 

X2*X4 1 0.00276176 0.00276176 0.03 0.8531 

X3*X4 1 0.07215566 0.07215566 0.90 0.3442 

X1*X5 1 0.41249580 0.41249580 5.13 0.0243 

X2*X5 1 0.02551130 0.02551130 0.32 0.5736 

X3*X5 1 0.05006306 0.05006306 0.62 0.4307 

X4*X5 1 0.08729260 0.08729260 1.09 0.2983 

X1*X6 1 0.00142262 0.00142262 0.02 0.8943 

X2*X6 1 0.02615450 0.02615450 0.33 0.5688 

X3*X6 1 0.22532900 0.22532900 2.80 0.0953 

X4*X6 1 0.00028789 0.00028789 0.00 0.9523 

X5*X6 1 0.00060841 0.00060841 0.01 0.9307 

X1*X7 1 0.21575110 0.21575110 2.68 0.1025 

X2*X7 1 0.12809671 0.12809671 1.59 0.2079 

X3*X7 1 0.25766852 0.25766852 3.21 0.0745 

X4*X7 1 0.03271566 0.03271566 0.41 0.5240 

X5*X7 1 0.00530801 0.00530801 0.07 0.7974 

X6*X7 1 0.04981625 0.04981625 0.62 0.4318 

X1*X8 1 0.09981079 0.09981079 1.24 0.2661 

X2*X8 1 0.00491921 0.00491921 0.06 0.8048 

X3*X8 1 0.01369067 0.01369067 0.17 0.6801 

X4*X8 1 0.32465854 0.32465854 4.04 0.0455 

X5*X8 1 0.08339143 0.08339143 1.04 0.3093 

X6*X8 1 0.01360928 0.01360928 0.17 0.6810 

X7*X8 1 0.13362799 0.13362799 1.66 0.1984 

X1*X9 1 0.09445953 0.09445953 1.18 0.2793 

X2*X9 1 0.10357124 0.10357124 1.29 0.2573 

X3*X9 1 0.42744545 0.42744545 5.32 0.0219 

X4*X9 1 0.00019049 0.00019049 0.00 0.9612 

X5*X9 1 0.02656552 0.02656552 0.33 0.5658 

X6*X9 1 0.03443808 0.03443808 0.43 0.5133 

X7*X9 1 0.17388753 0.17388753 2.16 0.1425 

X8*X9 1 0.10848552 0.10848552 1.35 0.2464 
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SOURCE DF TYPE III SS MEAN SQUARE F VALUE PR > F 

      

X1 1 0.02941719 0.02941719 0.37 0.5457 

X2 1 0.06687261 0.06687261 0.83 0.3625 

X3 1 0.10025676 0.10025676 1.25 0.2651 

X4 1 0.31944642 0.31944642 3.98 0.0472 

X5 1 0.12426009 0.12426009 1.55 0.2148 

X6 1 0.56153743 0.56153743 6.99 0.0087 

X7 1 0.03093564 0.03093564 0.38 0.5355 

X8 1 0.00850194 0.00850194 0.11 0.7452 

X9 1 0.00023349 0.00023349 0.00 0.9571 

X1*X2 1 0.21611042 0.21611042 2.69 0.1023 

X1*X3 1 0.44456002 0.44456002 5.53 0.0194 

X2*X3 1 0.00106261 0.00106261 0.01 0.9085 

X1*X4 1 0.00994286 0.00994286 0.12 0.7253 

X2*X4 1 0.00559911 0.00559911 0.07 0.7920 

X3*X4 1 0.07090010 0.07090010 0.88 0.3485 

X1*X5 1 0.47608897 0.47608897 5.92 0.0156 

X2*X5 1 0.02819740 0.02819740 0.35 0.5541 

X3*X5 1 0.04581569 0.04581569 0.57 0.4509 

X4*X5 1 0.09940774 0.09940774 1.24 0.2671 

X1*X6 1 0.00017169 0.00017169 0.00 0.9632 

X2*X6 1 0.02187133 0.02187133 0.27 0.6023 

X3*X6 1 0.22142050 0.22142050 2.76 0.0982 

X4*X6 1 0.00069580 0.00069580 0.01 0.9259 

X5*X6 1 0.00036603 0.00036603 0.00 0.9462 

X1*X7 1 0.21890413 0.21890413 2.72 0.1001 

X2*X7 1 0.11879012 0.11879012 1.48 0.2252 

X3*X7 1 0.24831177 0.24831177 3.09 0.0800 

X4*X7 1 0.04079283 0.04079283 0.51 0.4768 

X5*X7 1 0.00650185 0.00650185 0.08 0.7763 

X6*X7 1 0.04701798 0.04701798 0.59 0.4450 

X1*X8 1 0.08077053 0.08077053 1.01 0.3170 

X2*X8 1 0.00483870 0.00483870 0.06 0.8064 

X3*X8 1 0.01194486 0.01194486 0.15 0.7002 

X4*X8 1 0.31283789 0.31283789 3.89 0.0496 

X5*X8 1 0.08353019 0.08353019 1.04 0.3089 

X6*X8 1 0.01479496 0.01479496 0.18 0.6682 

X7*X8 1 0.13104280 0.13104280 1.63 0.2028 

X1*X9 1 0.08971828 0.08971828 1.12 0.2917 
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PARAMETER ESTIMATE STANDARD 

ERROR 

T VALUE PR > |T| EXPECTED VALUE 

INTERCEPT 0.5085373644 0.01638068 31.04 <.0001 Intercept 

X1 -.0099319424 0.01641507 -0.61 0.5457 x1 

X2 0.0149605253 0.01639954 0.91 0.3625 x2 

X3 -.0183248420 0.01640561 -1.12 0.2651 x3 

X4 0.0327061012 0.01640358 1.99 0.0472 x4 

X5 -.0203946538 0.01640059 -1.24 0.2148 x5 

X6 -.0433388470 0.01639445 -2.64 0.0087 x6 

X7 -.0101894905 0.01642222 -0.62 0.5355 x7 

X8 -.0053342915 0.01639936 -0.33 0.7452 x8 

X9 0.0008839163 0.01639772 0.05 0.9571 x9 

X1*X2 0.0268932339 0.01639888 1.64 0.1023 x1*x2 

X1*X3 -.0386158002 0.01641757 -2.35 0.0194 x1*x3 

X2*X3 0.0018850493 0.01639247 0.11 0.9085 x2*x3 

X1*X4 0.0057699477 0.01640307 0.35 0.7253 x1*x4 

X2*X4 0.0043262747 0.01638942 0.26 0.7920 x2*x4 

X3*X4 -.0154025037 0.01639747 -0.94 0.3485 x3*x4 

X1*X5 -.0399273684 0.01640347 -2.43 0.0156 x1*x5 

X2*X5 0.0097202282 0.01640895 0.59 0.5541 x2*x5 

X3*X5 0.0123909696 0.01640995 0.76 0.4509 x3*x5 

X4*X5 0.0182457501 0.01640441 1.11 0.2671 x4*x5 

X1*X6 -.0007582876 0.01640484 -0.05 0.9632 x1*x6 

X2*X6 -.0085570414 0.01640193 -0.52 0.6023 x2*x6 

X3*X6 -.0272254610 0.01640119 -1.66 0.0982 x3*x6 

X4*X6 0.0015242913 0.01638073 0.09 0.9259 x4*x6 

X5*X6 -.0011068709 0.01640025 -0.07 0.9462 x5*x6 

X1*X7 -.0270963784 0.01641698 -1.65 0.1001 x1*x7 

X2*X7 0.0199420562 0.01640170 1.22 0.2252 x2*x7 

X3*X7 0.0288233528 0.01639664 1.76 0.0800 x3*x7 

X4*X7 0.0116915061 0.01640920 0.71 0.4768 x4*x7 

X5*X7 0.0046675299 0.01640883 0.28 0.7763 x5*x7 

X2*X9 1 0.09779981 0.09779981 1.22 0.2710 

X3*X9 1 0.43646782 0.43646782 5.43 0.0206 

X4*X9 1 0.00013836 0.00013836 0.00 0.9669 

X5*X9 1 0.02461186 0.02461186 0.31 0.5805 

X6*X9 1 0.03433435 0.03433435 0.43 0.5139 

X7*X9 1 0.17722474 0.17722474 2.21 0.1388 

X8*X9 1 0.10848552 0.10848552 1.35 0.2464 
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X6*X7 0.0125467284 0.01640240 0.76 0.4450 x6*x7 

X1*X8 0.0164361859 0.01639395 1.00 0.3170 x1*x8 

X2*X8 0.0040221778 0.01639101 0.25 0.8064 x2*x8 

X3*X8 0.0063219655 0.01639723 0.39 0.7002 x3*x8 

X4*X8 0.0323496185 0.01639527 1.97 0.0496 x4*x8 

X5*X8 0.0167184006 0.01639766 1.02 0.3089 x5*x8 

X6*X8 0.0070330975 0.01639074 0.43 0.6682 x6*x8 

X7*X8 0.0209633936 0.01641587 1.28 0.2028 x7*x8 

X1*X9 -.0173379043 0.01640836 -1.06 0.2917 x1*x9 

X2*X9 -.0180974000 0.01640424 -1.10 0.2710 x2*x9 

X3*X9 -.0382190606 0.01639883 -2.33 0.0206 x3*x9 

X4*X9 -.0006800792 0.01638926 -0.04 0.9669 x4*x9 

X5*X9 0.0090797100 0.01640623 0.55 0.5805 x5*x9 

X6*X9 -.0107198748 0.01639964 -0.65 0.5139 x6*x9 

X7*X9 0.0243730487 0.01641182 1.49 0.1388 x7*x9 

X8*X9 -.0190628170 0.01640628 -1.16 0.2464 x8*x9 

Bayesian Logistic Regression for a Single Variable 

Analysis Of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate Standard 

Error 

Wald 95% Confidence Limits 

Intercept 1 1.2589 0.2121 0.8432 1.6746 

AGE 1 -0.0011 0.0081 -0.0170 0.0147 

Scale 0 1.0000 0.0000 1.0000 1.0000 

 

Initial Values of the Chain 

Chain Seed Intercept AGE 

1 1 1.258917 -0.00114 

Fit Statistics 

DIC (smaller is better) 1030.035 

pD (effective number of parameters) 2.006 

Posterior Intervals 

Parameter Alpha Equal-Tail Interval HPD Interval 

Intercept 0.050 0.8352 1.6753 0.8490 1.6847 

AGE 0.050 -0.0170 0.0149 -0.0167 0.0150 
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Geweke Diagnostics 

Parameter z Pr > |z| 

Intercept -0.7591 0.4478 

AGE 0.5152 0.6064 

Effective Sample Sizes 

Parameter ESS 
Autocorrelation 

Time 
Efficiency 

Intercept 8199.2 1.2196 0.8199 

AGE 8221.1 1.2164 0.8221 

 

 

Figure 1: In the panel of the diagnostic plots above, the first graph shows sparsely good spikes for the posterior 

distribution of the intercept. Autocorrelations are high in the first ten lags but low towards the end, and the 

posterior density is approximately normal and a bit smooth. 
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Figure 2: In the panel of the diagnostic plots above, the first graph shows sparsely good spikes for the posterior 

distribution of the Age. Autocorrelations are slightly high in the first ten lags but low towards the end, and the 

posterior density is approximately normal and a bit smooth. 

 

Bayesian Logistic Regression for Two Variables 

Table 6 

ANALYSIS OF MAXIMUM LIKELIHOOD PARAMETER ESTIMATES 

PARAMETER DF Estimate Standard 

Error 

Wald 95% Confidence Limits 

INTERCEPT 1 1.3288 0.2230 0.8916 1.7659 

AGE 1 -0.0013 0.0081 -0.0172 0.0145 

STUDY 1 -0.0077 0.0077 -0.0227 0.0074 

SCALE 0 1.0000 0.0000 1.0000 1.0000 
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Initial Values of the Chain 

Chain Seed Intercept AGE STUDY 

1 1 1.328775 -0.00134 -0.00765 

Fit Statistics 

DIC (smaller is better) 1031.042 

pD (effective number of parameters) 3.003 

Bayesian Analysis 

POSTERIOR SUMMARIES 

PARAMETER N Mean Standard 

Deviation 

Percentiles 

25% 50% 75% 

INTERCEPT 10000 1.3241 0.2257 1.1716 1.3220 1.4750 

AGE 10000 -0.00122 0.00815 -0.00669 -0.00124 0.00430 

STUDY 10000 -0.00758 0.00764 -0.0127 -0.00759 -0.00251 

 

 

POSTERIOR INTERVALS 

PARAMETER Alpha Equal-Tail Interval HPD Interval 

INTERCEPT 0.050 0.8826 1.7677 0.8962 1.7796 

AGE 0.050 -0.0175 0.0147 -0.0171 0.0148 

STUDY 0.050 -0.0226 0.00738 -0.0235 0.00644 

 

 

POSTERIOR CORRELATION MATRIX 

PARAMETER Intercept AGE STUDY 

INTERCEPT 1.000 -0.949 -0.318 

AGE -0.949 1.000 0.037 

STUDY -0.318 0.037 1.000 
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POSTERIOR AUTOCORRELATIONS 

PARAMETER Lag 1 Lag 5 Lag 10 Lag 50 

INTERCEPT 0.1497 -0.0047 -0.0006 0.0107 

AGE 0.1491 -0.0022 -0.0056 0.0187 

STUDY 0.1393 -0.0111 -0.0101 0.0028 

 

EFFECTIVE SAMPLE SIZES 

PARAMETER ESS Autocorrelation 

Time 

Efficiency 

INTERCEPT 7431.8 1.3456 0.7432 

AGE 7485.3 1.3359 0.7485 

STUDY 7297.1 1.3704 0.7297 

 

Figure 3: In the panel of the diagnostic plots above, the first graph shows sparsely good spikes for the posterior 

distribution of the intercept. Autocorrelations are high in the first ten lags but low towards the end, and the 

posterior density is approximately normal and a bit smooth. 
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Figure 4: In the panel of the diagnostic plots above, the first graph shows sparsely good spikes for the posterior 

distribution of the Age. Autocorrelations are slightly high in the first ten lags but low towards the end, and the 

posterior density is approximately normal and a bit smooth. 

 

Figure 5: In the panel of the diagnostic plots above, the first graph shows sparsely good spikes for the posterior 

distribution of the Study. Autocorrelations are slightly high in the first ten lags but low towards the end, and the 

posterior density is approximately normal and a bit smooth. 
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4. Conclusion 

In this paper, a Bayesian optimal design framework is implemented for D- & A-Optimality using SAS. Bayesian 

D- & A-Optimality criteria is derived based on expected Shannon information gain on the optimum point. To 

evaluate the proposed criteria, an algorithm to evaluate the analytically intractable design criterion is used. 

Bayesian Poisson regression has the benefit that it gives us a posterior distribution rather than a single point 

estimate. The Bayes Poisson showed that the best design was found in first try out of ten with a D- and A-

efficiency of 99.8014 and 99.6019 respectively and positive optimality. A survey was conducted on 300 

students to determine the factors that influence academic performance, questionnaires were distributed and their 

files were assessed from their respective departments to ascertained their actual cumulative grade point average. 

The data were subjected to statistical analysis, the results showed that Age, mode of stay and study time 

positively affect the incidence of cumulative grade point average of students, the posterior density is 

approximately normal and a bit smooth on all the parameters under consideration. 
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