© International Scientific Research and Researchers Association

https://ijfscfrtjournal.isrra.org/index.php/Formal_Sciences_Journal/index

Environmental Degradation and Economic Growth Nexus in Liberia: Auto Regressive Distributive Lag Analysis (ARDL MODEL)

Lester Z. Tenny PhD. Dean^{*}

A. Romeo Horton College of Business and Public Administration, University of Liberia, Moses C. Ekperiware (Caleb University, Lagos State, Nigeria) Email: tennyle@ul.edu.lr Email: moses.ekperiware@calebuniversity.edu.ng

Abstract

Economic growth has been said to degrade the environment. This study takes a long run analysis of the relationship between exploitation of the environment and economic performance in Liberia. The study used WDI data from 2001 to 2020 with the ARDL model in the Liberian economy. The study indicates long run analysis among population, environmental degradation, and economic growth in Liberia. Past economic performance positively affects economic growth while population of Liberia and exploitation of the environment negatively affect economic growth from the study. The study reports that population and environmental degradation were not statistically significant at 5% but the model was statistically significant with diagnostic and stability tests showing fitted good model. The study established a long run analysis. The recommendation from the study is that more environmentally friendly economic activities with huge attention on human capital development and management of the population of Liberia to optimally utilize human resources for economic development is pivotal.

Keywords: Environmental Degradation; Economic Growth; ARDL MODEL; Liberia.

1. Introduction

Liberia is a low-income country that is rich in natural resources which include iron ore, diamonds, gold, fertile soil, fishery, and forestry. However, the economic potential of these assets remains largely untapped [16]. Real GDP was estimated to contract by 3.1% in 2020, its third year of decline in the past five. The 2020 result reflects a pandemic-induced reduction in external demand for its major exports [1; 2].

⁻⁻⁻⁻⁻

^{*} Corresponding author.

Despite this gloomy outlook, the country economic fundamentals remain robust, mainly due to inflow of direct remittances and donors, bi-lateral and multilateral assistances. Real GDP was forecasted to be 2.8% driven mainly from post covid-19 recovery of the global economy and the demand for Liberia's key exports namely gold, diamonds, rubber and iron ore [1; 2]. The population of Liberia is estimated at 5.06 million people in 2020 with a current population growth rate of 2.4% [17]. It is estimated that approximately 51.6% of the population currently live in urban areas and this is projected to increase to 57.3% and 68.2% of the population by 2030 and 2050, respectively [17]. According to the environmental protection agency (2008) report Liberia is highly vulnerable to adverse effects of climate change. This high vulnerability to environmental instability is due to its extreme poverty and high dependence on 'climate sensitive' sectors such as agriculture, forestry, fisheries, and energy and mining [9]. As the population grows, the pressure on the environment will eventually need to be managed.

2. Literature Review

There literature on environment degradation, caused by climate variation, population and economic activities continued to point light on the growing concerns of its devastating impact it has on both livelihood and economic growth. The study on the elements of environmental pollution and the mechanisms to mitigate it, has been a growing theoretical and empirical literature in recent years that verifies the relationship between economic growth, energy consumption and CO2 emissions [3; 13]. There is a wide empirical literature verifying the relationship between economic activity and environmental degradation, in particular the relationship between economic growth, energy consumption and carbon dioxide (CO2) emissions [5; 15; 4; 6; 10]. Although the empirical evidence is not conclusive, the results suggest a strong relationship between economic activity and environmental degradation, with greater emphasis during the process of development [3]. Countries with high industrialization are mostly susceptible to huge greenhouse gas emissions, especially carbon dioxide emission which inadvertently negatively impact the ecosystem because the increased manufacturing activity associated with development leads to increased CO2 emissions [7]. However, in countries like Liberia with low levels of industrialization and high levels of vegetal cover, a serious environmental problem is associated with growing deforestation, also known at the expansion of the agricultural frontier [8] and not with CO2 emissions. Others have argued that the relationship between the environment and economic growth, whether positive or negative, is not fixed along a country's development path [16; 14]. The 'Environmental Kuznets Curve' shows that at a low level of development, both the quantity and intensity of environmental degradation is limited on economic activities was hypothesized to explain this relationship [12]. There were others who argued that at a 'higher levels of development, structural change towards information-based industries and services, more efficient technologies, and increased demand for environmental quality result in levelling-off and a steady decline of environmental degradation' [14]. The question of the involvement of population on the environment has been a heated debate by Neo Malthusians who stressed the negative impact of population growth. In their argument, ignoring the presence of technology and the advancement of society, they posited that population growth has no limit and that at some stages, there will exist overpopulation while those who developed the anti-thesis of this argument tend to argue that population growth can have a positive effect by stimulating demand and encouraging technological innovation and permitting economies of scale in production [11].

3. Research Method

The study was conducted using a quantitative research method with secondary data from various WDI websites. It is being implemented to get an in-depth understanding how economic growth relates with population and environmental degradation in Liberia from 2002 to 2020. The model specification below depicts the analogy;

y = a + bx

Where:

y = economic growth (GDP_GROWTH)

a = constant variable

b = coefficient of population and environmental degradation

x = population and environmental degradation (CO2_FUEL)

$$GDP_GROWTH_t = C + POPULATION_t + B2CO2_FUEL_t + e_t$$

Where t represent the years of the time series analysis that made up data analysis technique.

Above is a model formulated from the dependent and independent variables of the topic under study and is used to run the regression analysis.

Since the unit root test indicated some variables are stationary at levels and others were stationary at first difference, the ARDL model is applied in this study. The final model specification is thus;

$$Y_{t} = C + \sum_{i=0}^{p} \alpha Y_{t-i} + \sum_{i=0}^{p} bi X_{t-i} B + e_{t}$$

Where Y is the dependent variable and X is the independent variables, α is the coefficient of the lagged dependent variables as a regressor in the model, *bi* is the coefficient of the other independent variables, and the *e* is the error term

4. Presentation Of Result And Discussion

Table 1: Variable Discription

Carbon dioxide emissions from liquid fuel consumption refer mainly to emissions from use of petroleum-derived fuels as an energy source.	1	CO2_fuel
Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.	1	population
Annual percentage growth rate of GDP at market prices based on constant local currency. Aggregates are based on constant 2015 prices, expressed in U.S. dollars. GDP is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources.	0	GDP_GROWTH

Table 2: Unit Root Test Result

s/n		levels	First difference	remark
1	GDP	-3.507009(-		I(0)
		3.040391)		
2	Co2		-3.798485(-	I(1)
			3.040391)	
3	рор		-26.2526(-	I(1)
			3.052169)	
4				

Source: Author's computation with Eviews 10 (2022

Using the cointegration of Bounds test proposed by Pesaran, Shin and Smith (2001), the ARDL estimates are presented below

The lag length selection from table 3 indicates one lag. Hence, one lag is the appropriate lag length used in the ARDL model

Endogen	ous variables: G	DP_GROWTH	POPULATION	CO2_FUEL		
Exogenous variables: C						
Date: 02/	11/22 Time: 17	7:38				
Sample: 2	2001 2020					
Included	observations: 17	7				
Lag	LogL	LR	FPE	AIC	SC	HQ
			_	_		
0	-414.6794	NA	4.40e+17	49.13876	49.28579	49.15337
1	-339.9808	114.2450	1.99e+14	41.40950	41.99765	41.46797
2	-318.2014	25.62281*	5.03e+13*	39.90604*	40.93531*	40.00836*
* indicat	es lag order sele	ected by the crite	rion			
LR: sequ	ential modified	LR test statistic	(each test at 5%	level)		
FPE: Fir	al prediction er	ror				
AIC: Ak	aike information	n criterion				
SC: Sch	warz informatio	n criterion				
HQ: Har	nan-Quinn info	rmation criterior	1			

Table 3: VAR Lag Order Selection Criteria

Source: Author's computation with Eviews 10 (2022)

Table 4: VAR Lag Order Selection Criteria

Endogenous variables: GDP_GROWTH Exogenous variables: C CO2_FUEL POPULATION Date: 03/01/22 Time: 07:05 Sample: 2001 2020 Included observations: 15

Lag	LogL	LR	FPE	AIC	SC	HQ
0	35 20/00	ΝΛ*	0 508101	5 003087	5 235507	5 002/178
1	-33.10102	3.085686	8.348954*	4.946803*	5.135616*	4.944792*
2	-32.90748	0.258058	9.420931	5.054330	5.290347	5.051816
3	-32.83273	0.089700	10.88209	5.177697	5.460917	5.174680
4	-32.82413	0.009170	12.81062	5.309884	5.640308	5.306364

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

Source: Author's computation with Eviews 10 (2022)

The ARDL bounds test reveals the presence of cointegration as the f statistics is greater than the I(1) series bound. This is as a result of rejecting the null hypothesis of no cointegration

F-Bounds Test	Null Hypothesis: No levels relationship			
Test Statistic	Value	Signif.	I(0)	I(1)
			Asympto n=1000	otic:
F-statistic	5.910007	10%	2.63	3.35
k	2	5%	3.1	3.87
		2.5%	3.55	4.38
		1%	4.13	5
Actual Sample Size	18		Finite n=35	Sample:
-		10%	2.845	3.623
		5%	3.478	4.335
		1%	4.948	6.028
			Finite n=30	Sample:
		10%	2.915	3.695
		5%	3.538	4.428
		1%	5.155	6.265

Table 5: ARDL Long Run Form and Bounds Test

Source: Author's computation with Eviews 10 (2022)

Having found a long run relationship among environmental pollution, population and economic growth in the Liberian economy, table 5 present both the short run and long run estimates of the ARDL below. Table 5 indicates that lag economic growth after the war positively supports economic progress in Liberia at a statistically significant rate in the short run term. Population and environmental pollution were not significant at 5% level of significance in the short run analysis. However, the long run variable indicates a negative and significant estimate. This shows that the model adjusts from any discrepancy to model between the short run and long run analysis I the Liberian economy.

This shows that past economic performance positively affects economic growth in Liberia. The speed of adjusting long run differences in the model has the required negative sign and significant hence the model would adjust any discrepancies to equilibrium. But clearly though not statistically significant, the management of the population as well as environmental issues have not been efficient in supporting economic growth in Liberia.

Table 6: ARDL Short ru	n and Long Run Estimates
------------------------	--------------------------

Dependent Variable: GDP_0	GROWTH				
Method: ARDL					
Date: 03/01/22 Time: 07:17	7				
Sample (adjusted): 2004 202	20				
Included observations: 17 af	ter adjustments				
Maximum dependent lags: 1	(Automatic selectio	n)			
Model selection method: Ak	aike info criterion (A	AIC)			
Dynamic regressors (1 lag, a	utomatic): CO2_FU	EL POPULATION	ECM(-1)		
Fixed regressors: C					
Number of models evalulate	ed: 8				
Selected Model: ARDL(1, 1	, 0, 0)				
Note: final equation sample	is larger than selection	on sample			
Variable	Coefficient	Std. Error	t-Statistic	Prob.*	
GDP_GROWTH(-1)	1.329299	0.391034	3.399451	0.0059	
CO2_FUEL	0.017649	0.018627	0.947474	0.3637	
CO2_FUEL(-1)	-3.26E-05	0.017025	-0.001914	0.9985	
POPULATION	-8.29E-06	1.06E-05	-0.782838	0.4502	
ECM(-1)	-1.804971	0.440969	-4.093193	0.0018	
С	18.00935	25.15203	0.716020	0.4889	
R-squared	0.650144	Mean depen	dent var	2.311428	
Adjusted R-squared	0.491119	S.D. depende	ent var	9.176708	
S.E. of regression	6.546287	Akaike info	criterion	6.866237	
Sum squared resid	471.3926	Schwarz crit	erion	7.160313	
Log likelihood	-52.36302	Hannan-Qui	nn criter.	6.895469	
F-statistic	4.088308	Durbin-Wats	son stat	1.020066	
Prob(F-statistic)	0.024154				
*Note: p-values and any sub	sequent tests do not	account for model	1		
selection.					

Source: Author's computation with Eviews 10 (2022)

5. Conclusion

The study concludes that management of people's activities and environmental protections are not efficient in supporting economic growth. However, past economic growth gains positively account for economic growth in the long run.

6. Policy recommendation from the study

This paper recommends that production activities should meet standards and population management and human capital development should be prioritized.

APPENDIX

cos_fuel

stationary at first diff

Table 7

Null Hypothesis: D(CO2_FUEL) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=4)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-5.277803	0.0006
Test critical values:	1% level	-3.857386	
	5% level	-3.040391	
	10% level	-2.660551	

*MacKinnon (1996) one-sided p-values.

Warning: Probabilities and critical values calculated for 20 observations and may not be accurate for a sample size of 18

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CO2_FUEL,2) Method: Least Squares Date: 02/11/22 Time: 16:05 Sample (adjusted): 2003 2020 Included observations: 18 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CO2_FUEL(-1)) C	-1.274752 53.58533	0.241531 28.86933	-5.277803 1.856134	0.0001 0.0819
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.635163 0.612361 114.3677 209279.6 -109.7904 27.85521 0.000075	Mean dep S.D. deper Akaike int Schwarz c Hannan-Q Durbin-W	endent var ndent var fo criterion criterion quinn criter. atson stat	-0.950704 183.6917 12.42115 12.52008 12.43480 1.932573

population total

stationary at first diff

Table 8

Null Hypothesis: D(POPULATION) has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=4)

		t-Statistic	Prob.*
Augmented Dickey-F	uller test statistic	-26.25265	0.0000
Test critical values:	1% level	-3.886751	
	5% level	-3.052169	
	10% level	-2.666593	

*MacKinnon (1996) one-sided p-values.

Warning: Probabilities and critical values calculated for 20 observations and may not be accurate for a sample size of 17

Augmented Dickey-Fuller Test Equation Dependent Variable: D(POPULATION,2) Method: Least Squares Date: 02/11/22 Time: 16:55 Sample (adjusted): 2004 2020 Included observations: 17 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(POPULATION(-1)) D(POPULATION(-1),2) C	-0.303339 0.708867 36142.04	0.011555 0.023802 1327.945	-26.25265 29.78144 27.21652	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.990371 0.988996 1205.992 20361821 -143.0876 719.9881 0.000000	Mean depe S.D. deper Akaike inf Schwarz cr Hannan-Q Durbin-Wa	endent var adent var o criterion riterion uinn criter. atson stat	3998.529 11496.43 17.18678 17.33381 17.20139 2.071612

GDP_GROWTH

STATIONARY AT LEVELS

Table 9

Null Hypothesis: GDP_GROWTH has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on AIC, maxlag=3)

		t-Statistic	Prob.*
Augmented Dickey-Fi	uller test statistic	-3.507009	0.0202
Test critical values:	1% level	-3.857386	
	5% level	-3.040391	
	10% level	-2.660551	

*MacKinnon (1996) one-sided p-values.

Warning: Probabilities and critical values calculated for 20 observations and may not be accurate for a sample size of 18

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GDP_GROWTH) Method: Least Squares Date: 02/11/22 Time: 17:18 Sample (adjusted): 2003 2020 Included observations: 18 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GDP_GROWTH(-1) C	-0.877821 2.064524	0.250305 2.250976	-3.507009 0.917168	0.0029 0.3727
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.434611 0.399274 9.115859 1329.582 -64.26113 12.29911 0.002920	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.288807 11.76141 7.362348 7.461278 7.375989 1.987922

Diagnostic test

Correlation

Table 10

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	3.558008	Prob. F(5,6)	0.0770
Obs*R-squared	12.71249	Prob. Chi-Square(5)	0.0262

Test Equation: Dependent Variable: RESID Method: ARDL Date: 03/01/22 Time: 08:15 Sample: 2004 2020 Included observations: 17 Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GDP_GROWTH(-1) CO2_FUEL CO2_FUEL(-1) POPULATION ECM(-1) C RESID(-1) RESID(-1) RESID(-2) RESID(-3) RESID(-4)	0.119095 0.010044 0.000376 -3.13E-06 -0.561758 4.066151 0.633139 -0.629687 -0.427960 -0.143377	0.305414 0.013953 0.011998 7.82E-06 0.330661 18.32674 0.494891 0.335170 0.308808 0.350171	0.389946 0.719886 0.031304 -0.400109 -1.698893 0.221870 1.279350 -1.878712 -1.385845 -0.409448	0.7100 0.4987 0.9760 0.7029 0.1403 0.8318 0.2480 0.1094 0.2151 0.6964
RESID(-5)	-0.404943	0.407589	-0.993508	0.3588
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.747794 0.327450 4.451371 118.8882 -40.65420 1.779004 0.248186	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		4.66E-15 5.427894 6.076965 6.616103 6.130556 1.368255

Normality test

Figure 1

Heteros

Table 11

Heteroskedasticity Test: Breusch-Pagan-Godfrey

F-statistic	1.667477	Prob. F(5,11)	0.2227
Obs*R-squared	7.329613	Prob. Chi-Square(5)	0.1973
Scaled explained SS	2.495266	Prob. Chi-Square(5)	0.7772

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 03/01/22 Time: 08:16 Sample: 2004 2020 Included observations: 17

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GDP_GROWTH(-1) CO2_FUEL CO2_FUEL(-1) POPULATION ECM(-1)	12.09720 -2.180022 0.066767 -0.100103 1.10E-05 4.684982	127.3874 1.980467 0.094341 0.086225 5.36E-05 2.233375	0.094964 -1.100762 0.707713 -1.160954 0.204252 2.097714	0.9261 0.2945 0.4938 0.2702 0.8419 0.0598
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.431154 0.172587 33.15496 12091.77 -79.94202 1.667477 0.222682	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		27.72898 36.44915 10.11083 10.40490 10.14006 2.125274

All the stability and diagnostic test shows that the model is stable

References

[1]African Development Bank Group (2022) Liberia economic outlook

- [2]Africa Economic Outlook (2022) Supporting climate resilience and a just energy transition in Africa
- [3] Alvarado, R. and Toledo, E. (2016) Environmental degradation and economic growth: evidence for a developing country. *Springer Science+Business Media Dordrecht*.
- [4] Ang, J. B. (2008). Economic development, pollutant emissions and energy consumption in Malaysia. *Journal of Policy Modeling*, 30(2), 271–278.
- [5] Azlina, A. A. (2012). Energy consumption and economic development in Malaysia: A multivariate cointegration analysis. *Procedia-Social and Behavioral Sciences*, 65, 674–6
- [6] Chang, C. C., & Carballo, C. F. S. (2011). Energy conservation and sustainable economic growth: The case of Latin America and the Caribbean. *Energy Policy.*, 39(7)
- [7] Cherniwchan, J. (2012). Economic growth, industrialization, and the environment. *Resource and Energy Economics*, *34*(*4*), *442*–467.

[8]Djezou, W. B. (2013). Optimal conversion of forest land to agriculture: Evidence from Co^te d'Ivoire.

Journal of Agricultural Studies, 1(2), 13–36.

- [9] Environment protection Agency of Liberia (2008) Liberia national adaptation program of action (NAPA).
- [10] Hwang, J. H., & Yoo, S. H. (2014). Energy consumption, CO2 emissions, and economic growth: Evidence from Indonesia. *Quality & Quantity*, 48(1), 63–73
- [11] Kalipeni, E. (2014) population growth and environmental degradation on Malawi. Africa insight 22(4)
- [12] Kuznets, S. (1955). Economic growth and income inequality. *The American Economic Review*, 45(1), 1–28
- [13] Pao, H. T., & Tsai, C. M. (2011). Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil. *Energy*, 36(5), 2450–2458
- [14] Panayotou, T. (1997) Demystifying the Environmental Kuznets Curve: Turning a Black Box into a Policy Tool, Environment and Development Economics.
- [15] Saboori, B., & Soleymani, A. (2011). CO2 emissions, economic growth and energy consumption in Iran: A co-integration approach. *International Journal of Environmental Sciences*, 2(1), 44–53
- [16] Shafik, N. (1994) Economic Development and the Environmental Quality: An Econometric Analysis, Oxford Economic Papers
- [17] World Bank open data (2021) world development indicator. Liberia
- [18] World Bank data bank (2021) population estimates and projection. Liberia