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Abstract 

In this study, Microsoft stock price was modeled using two traditional time series models and two machine 

learning models for reliable predictions of the future behavior of the stock prices and more gainful investment. 

Model metrics such as AIC, BIC, Log-likelihood, RMSE, and confidence set test were the basis for comparison 

of the models. The results showed that the GARCH model outperformed the ARIMA and Support Vector 

Regression models while the Long Short-Time Memory –Recurrent model outperformed the GARCH model.  

Forecasts from the Long Short-Time Memory were made and found to be highly reliable. The results of the 

forecast also showed an uptrend movement up to a price of around $275 from November 2023 to January 2024. 

In conclusion, the LSTM-RNN is capable of accurately tracking and forecasting movements of volatile stock 

prices and is preferred over the other models considered in this study. 

Keywords: Machine learning models; Traditional time series models; Stock prices; Support zone; Resistance 

zone. 
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1. Introduction 

The stock market is an essential aspect of any economy, as it facilitates the allocation of resources and raises 

capital for businesses. As such, the ability to predict stock prices has garnered significant attention from 

investors, financial analysts, and researchers alike. Nigeria, as the largest economy in Africa, has a thriving 

stock market, and accurate predictions of stock prices could be valuable to investors and policymakers. Suppose 

a reliable and efficient model could be built to anticipate the short-term price of an individual stock, as well as 

the pace at which individuals invest in the stock market. 

In that case, the stock market's business potential may expand. Investment decisions must be based on accurate 

forecasts because of the tremendous volatility of stock prices. 

Modeling a system and anticipating its future behavior has been widely researched and studied for many years, 

particularly the topic of trend analysis on time series or index series, which can both be represented as a 

sequence [1]. Unfortunately, in many forecasting situations, the most traditional statistical model cannot 

produce the results expected. This is because a standard statistical model must evaluate whether the system is a 

linear or nonlinear model, what the right order of function for prediction is, and how to test the forecasting 

model's fitness [2]. Over the years, many technologies, including machine learning and statistical 

methodologies, have been employed to predict stock prices. However, due to the increased amount of data and 

the expectation of more accurate model prediction, machine learning models are now being utilized, which have 

an advantage in terms of accuracy and speed of prediction over classic statistical time series methods. Therefore, 

an alternative is to seek kinds of intelligent methods as prediction tools like the Long Short-Time Memory 

Recurrent Neural Network (LSTM-RNN) and Support Vector Machine (SVM) in which the crucial problem 

mentioned in the traditional statistical model can be avoided. 

Several authors have studied stock market prices and the findings are reviewed thus: 

Reference [3] forecasted stock market indices on the New York Stock Exchange using linear regression and 

simple neural network models from 1981 to 1999. The model used pattern recognition that efficiently and 

accurately identified spikes in the trading volumes and forecasted future changes in price based on the historical 

price, traded volume, and the prime interest rate. Three years later, an ensemble model comprising SVM and 

artificial neural networks (ANNs) for stock price prediction was proposed by [4]. The ensemble model 

outperformed the single model according to their empirical findings. In 2010, [5] compared SVM with a multi-

layer back-propagation (BP) neural network in time series forecasting. Their results suggested that SVM 

outperformed the BP neural network. A year later, Reference [6] used ARIMA-Intervention time series analysis 

as both an analytical and forecast tool for the values of the stock price index of the chosen company in their 

study. Reference [7] later compared the traditional time series decomposition (TSD) model, the Hot Winters 

(H/W) exponential smoothing with trend and seasonality model, the Box-Jenkins (B/J) model using auto-

correlation and partial auto-correlation, and the machine learning model—neural network-based models. The 

result of their study showed that the machine-learning model outperformed the traditional models. However, [8] 

revealed that the ARIMA model has a high potential for short-term prediction and can compete favorably with 
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existing stock price prediction techniques. Feed-forward neural networks using a back propagation technique 

were compared with panel data regression analysis for the prediction of stock price [9]. The findings showed 

that the neural network method was superior and more effective than regression in predicting stock values. [10] 

using daily closing prices of SENSEX from 1997-2014 examined the efficiency of the Indian stock market if 

stock returns follow a random walk. Results show that the market is inefficient in weak form, suggesting that 

past stock prices may not reflect all information, and abnormal returns can be achieved by exploiting market 

inefficiency. A year later [11] studied the Random Walk Hypothesis (RWH) and market efficiency of stock 

market indices like the London Stock Exchange, EuroStoxx 50, NIKKI, Shanghai Composite Stock Exchange, 

and Bombay Stock Exchange. Their results showed that the null hypotheses were rejected, with few acceptances 

based on test statistics. In the same 2018, the Recurrent Neural Network (RNN) algorithm was applied to the 

prediction of the closing price of a specific stock [12]. The predicted closing prices were cross-checked with the 

true closing price, and it was suggested that the model could be used to make predictions for other volatile 

financial instruments. Their claim was supported by [13], who compared three models: ARIMA, ANN, and 

LSTM (Long-short-term memory). Their findings suggested that LSTM had the strongest prediction 

performance but was strongly affected by data processing. However, the ANN model outperformed the ARIMA 

model., The results of [14,15] concluded that their deep learning models outperformed other models in 

forecasting stock price movement and stock price due to the extensive feature engineering they developed. 

Other machine learning models have been studied also: Random Forest Regression outperformed Extra Tree 

Regression as in [16] while the geometric Brownian motion model outperformed the multilayer perceptron in 

[17]. 

Recently, Reference [18] used different machine learning algorithms using historical stock price data. In their 

research, they used five regression models: linear regression, random forest, support vector regression (SVM), 

vector auto-regression (VAR), and long-term short-term memory (LSTM). The results showed that the LSTM 

model outperformed all of the others. Reference [19] compared time series models (autoregressive moving 

average (ARMA) and autoregressive integrated moving average (ARIMA)) with integrated artificial neural 

networks and meta-heuristic algorithms on stock price forecasting. The artificial neural network (ANN) was 

trained with meta-heuristic algorithms, including the social spider optimization (SSO) and bat algorithm (BA). 

Their findings showed that a hybrid meta-heuristic-based ANN outperformed others. Reference [20] proposed a 

recurrent neural network (RNN) and long short-term memory (LSTM) model by using machine and deep 

learning models to predict the trend in stock prices that would be more accurate. In his experiment, by 

increasing the epochs and batch size, the accuracy of prediction increased. The proposed method is capable of 

tracing and predicting stock market movements with highly accurate results. 

This study aims to compare the performance of the Autoregressive Integrated Moving Average (ARIMA), 

Generalized Autoregressive Conditional Variance (GARCH), Long Short-Term Memory-Recurrent Neural 

Network (LSTM-RNN), and Support Vector Regression (SVR) in the prediction of Microsoft Stock closing 

prices. The specific objectives are to: (i) model the stock price data of Microsoft using the ARIMA model (ii) 

model the stock price data of Microsoft using the GARCH model (iii) model the stock price data of Microsoft 

using Long Short Time Memory-Recurrent model (iv) model the stock prices data of Microsoft using Support 

Vector Regression model (v) compare (a) the predictive power of (i) and (ii) which are the traditional statistical 
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time series models (b) the predictive power of (iii) and (iv) which are the machine learning models and finally 

(vi) use the best model out of the four models to forecast future values of the stock prices of Microsoft. 

The rationale for this study is that precise stock price forecasting can lead to a higher profit yield for stock 

investors especially those who invest in Microsoft stocks. This is because although Apple's stock is trading at a 

better value and is the better growth stock to buy right now keeping Microsoft stock on your radar for future 

investment is still a good idea [21]. Therefore, the motivation for studying Microsoft stock is to assist investors 

who keep Microsoft stock to choose securities that will deliver a higher return, according to predictions. 

However, this study is limited to Microsoft stock close prices for a period of 27 months, from September 2020 

to December 2022 because we intend to model the behavior of Microsoft stock prices as influenced by the 

COVID-19 pandemic. This paper is divided into sections; Section 2: Materials and Methods is the next section 

to be discussed, followed by the other remaining sections and the references. 

2. Materials and Methods 

This section contains the data collection method, the descriptions of the [2] model, the GARCH model, the 

LSTM model, and finally SVM model. 

2.1 Method of Data Collection 

The data used in this study was historical daily stock prices for the Microsoft Corporation, and secondary data 

obtained from the YahooFinance website (www.yahoofinance.com). The date, open price, low price, high price, 

closing price, and volume traded are all part of the stock data. However, in this study, the closing price is used 

for modeling and prediction of the stock prices. This is because the closing price reflects the entire day's 

activities. 

2.2 ARIMA (p, d, q) model for Stock Price of Microsoft Incorporation  

ARIMA is a class of models that estimate future values by explaining a given time series based on its past 

values, that is, its lags and lagged prediction errors. ARIMA models can be used to simulate any non-seasonal 

time series with a pattern that is not random white noise [22]. According to [23], ARIMA is an acronym for 

autoregressive integrated moving average. It combines the autoregressive (AR) and moving average (MA) 

models, as well as the integrating process, which converts a non-stationary time series variable to a stationary 

one. Reference [2] established a three-step technique for deciding the best ARIMA model, which is critical in 

the selection process. The three steps are identification, estimation, and diagnostic testing. These three steps can 

be done several times to find the optimal model [2]. While selecting the optimum ARIMA model, the notion of 

parsimony is critical to avoid overfitting the model. As explained by [23], "d" is the number of times the data is 

differenced to make it stationary, "p" is the number of lags that cross the significant limit in the Partial 

Autocorrelation Function (PACF) plot, and "q" is the number of lags that crosses the significant limit in the 

Autocorrelation Function (ACF) plot. The method in [2] has been widely applied by researchers in modeling 

financial data like [24,25], etc 

http://www.yahoofinance.com/
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According to [23], given the Microsoft closing stock price
t

x , the ARIMA ),,( qdp   model is given as in 

equation (1): 

tt

d ZBXBB )()1()(           (1) 

where 

)(B is the characteristic polynomial of order “p” for the autoregressive component of the model. 

)(B is the characteristic polynomial of order “q” for the moving average component of the model. 

dB)1(  is the differencing of order “d” of the data. 

tX is the observed value at the time t  

tZ is the random error associated with observation at time t 

3.2.1  Model Identification 

The series (Microsoft stock closing prices) are tested for stationarity assumption using different approaches. The 

approaches include: 

i.  Observing time series, ACF, and PACF plots. 

The autocorrelation between 
t

X  and its value
kt

X


, separated by k intervals of time is called the 

autocorrelation  
k

  at lag k and is defined by equation (2): 
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variance at lag k which is the same at lag 1k  for stationary series. 

Similarly, for any given process
t

X , zt , a partial autocorrelation at lag k  is given by equation (3): 

















k

j
jkj

k

j
jkkjk

kk

1

1
,11

1,1

1 




        (3)

 

where, 
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In the same way, the matrix version is given by equation (4): 
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where  

k
 is an kk autocorrelation matrix 

with the last column replaced by  
k
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The autocorrelation matrix for any series of length n is given by: 
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The Partial Autocorrelation Plot (PACF) and Autocorrelation Plot (ACF) are used to determine the values of p

and q respectively as described in [23]. The determination of the values q depends on the number of 

significant spikes that cross the significant region (the blue-shaded region, this blue area depicts the 95% 

confidence interval and is an indicator of the significance threshold) in Figure 11. According to [26], the basic 

guidelines for interpreting the ACF and PACF plots are as follows: Look for tail-off patterns in either ACF or 

PACF. If tail off at ACF → AR model → Cut off at PACF will provide order p for AR(p). If tail off at PACF → 

MA model → Cut off at ACF will provide order q for MA(q). 

(ii)The second approach for identifying the appropriate ARIMA model is by conducting an Augmented Dickey-

Fuller test on the series. This test considers different assumptions such as under constancy, alongside no drift, or 

along a trend and a drift term. If the series is not stationary, then the first or second difference is likely to be 

stationary.  

The hypothesis as given in [27] is: 

,1:
10
H that is: the process contains a unit root and therefore it is non-stationary. 

,1:
11
H that is: the process does not contain a unit root and is stationary. 
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Decision: If the p-value < 0.05, we reject the null hypothesis. This means that there is stationarity in the stock 

data.  

2.2.2 Model Estimation 

Once stationarity is attained, the next thing is to fit different values of p and q, and then estimate the parameters 

of the ARIMA model. We use iterative methods to select the best model based on the following measurement 

criteria: AIC (Akaike information criteria) BIC (Bayesian information criteria) and log-likelihood. 

i. Akaike’s Information Criteria (AIC)    12*2  kqpLLog   (5) 

where  

L is the likelihood of the series 

and ,0k if 0c  

ii. Bayesian Information Criteria (BIC)     1*2  kqpTLogAIC
 

(6) 

where  

T is the maximum likelihood estimation limit 

iii. log-likelihood of the data: This is the logarithm of the probability of the observed data coming from 

the estimated model. The larger the log-likelihood, the better the model. 

Note: smaller values of AIC, and BIC with maximum log-likelihood indicate a better model. 

2.2.3 Model Diagnosis 

The conformity of the white noise residual of the model fit will be judged by plotting the ACF and the PACF of 

the residual to see whether it does not have any pattern, when steps 1-3 are achieved, we go ahead and fit the 

model. 

2.3 Symmetric Models 

2.3.1  Autoregressive Conditional Heteroscedastic (ARCH) Model 

The Autoregressive Conditional Heteroscedastic (ARCH) model is used to model the error of the conditional 

variance of a series. Suppose we are modeling the error variance of a series 
t

X , the ARCH (1) model for the 

error variance is the condition 
1t

X at time 𝑡 (it implies q = 1). 

Mathematically, the ARCH (1) model is represented in equation (7): 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝑢𝑡−1

2 + ⋯ + 𝛼𝑞𝑢𝑡−𝑞
2         (7) 
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We impose the constraints that 𝛼0 ≥ 0, 𝛼1 ≥ 0and 𝛼𝑞 ≥ 0 𝑡𝑜 avoid negative variance.  

An ARCH(q) model can be estimated using ordinary least squares. The mean equation for prediction purposes 

which was adopted in this study for predicting the stock price is available in [28]. 

2.3.2  Generalized Autoregressive Conditional Heteroscedastic: GARCH (p, q) Model 

One of the most challenging problems nowadays for econometrics academics, time series analysts, and 

policymakers is modeling the variance that happens in an econometric series, which has become a significant 

source of worry in the financial markets. This has been the subject of all research for a very long time.  Once 

there is volatility clustering in the time series, the ARIMA is not appropriate. Volatility clustering is simply a 

continuous rise and decrease over time in a time series. Reference [28] argues that an adequate volatility model 

is one that sufficiently models heteroscedasticity in the disturbance term and also captures the stylized facts 

inherent in stock return series, such as volatility clustering, the autoregressive conditional heteroscedasticity 

(ARCH) effect, and asymmetry. The famous volatility models used in most studies include autoregressive 

conditional heteroscedasticity and its extensions, such as generalized ARCH, threshold GARCH, exponential 

GARCH, and power GARCH. In most cases, first-order GARCH models have been extensively proven to be 

adequate for modeling and forecasting financial time series. Reference [29] employed empirical data and 

various GARCH models to evaluate the volatility of the Malaysian stock market (symmetric and asymmetric). 

Other researchers include [30,31,32,33]. 

The Generalized Auto-regressive Conditional Heteroskedasticity (GARCH) model is a statistical model used to 

analyze time series data that exhibit conditional heeroskedasticity, which is the phenomenon where the variance 

of the errors in a time series changes over time. In other words, the GARCH model allows for the estimation of 

time-varying volatility in a time series. The model was first introduced by [28] in the 1980s, and it has since 

become a widely used tool in financial econometrics for modeling asset returns, volatility, and risk. The 

GARCH model builds on the Autoregressive Conditional Heteroskedasticity (ARCH) model, which assumes 

that the variance of a time series is a function of its past values. The GARCH model extends this concept by 

allowing the variance to depend not only on the past values of the time series but also on the past values of its 

squared errors. 

The past squared observation value and past variance are used by the GARCH model to model the variance at 

time t. The conditional variance is allowed to depend on prior lags in the model. The models gauge how much a 

volatility shock from today will affect volatility in the coming term. It gauges how quickly this effect has 

subsided over time. The GARCH (1, 1) variance process model is defined in equation (8).  

2

11

2

110

2




ttt
u          (8) 

A GARCH(p,q) model can be estimated using ordinary least squares. The mean equation for prediction purposes 

which was adopted in this study for predicting the stock price is available in [34]. 

2.4 Methods of Estimation of GARCH Models 

https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Least_squares
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2.4.1  Maximum Likelihood Function (MLF) 

The maximum likelihood estimator is the technique used to estimate the GARCH model. The technique is used 

to determine the parameter value that is most likely given the actual series. The GARCH model is estimated in 

the following two phases.  

(i)  Specify the mean and variance equation, for example, AR(1) in equation (9) and GARCH(l,1) in 

equation (10) 

   2

1
,0~;

tttt
yy  


     (9) 

2
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2

110

2




ttt
        (10) 

(ii) Estimate the likelihood function to maximize the normality assumption of disturbance terms given in 

equation (11) 

    
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2

1
2log

2
log

t t
t

t

t
L     (11) 

2.5 Long Short-Time Memory Recurrent Neural Network (LSTM-RNN) 

The LSTM-RNN (Recurrent Neural Network) is a soft computing method for modeling sequential data. It is 

made up of multiple self-connected LSTM cells that are utilized to store the networks' temporal state utilizing 

three gates: input, output, and forget gates. Stock price prediction is a tough task that can be represented using 

Machine Learning and Artificial Neural Networks techniques. RNNs (Recurrent Neural Networks) are a type of 

neural network that is particularly effective at processing time series and other sequential data [35]. The LSTM-

RNN is a form of Recurrent Neural Network composed of several self-connected LSTM cells that are used to 

record the network's temporal state using three gates: input, output, and forget.  

Neural networks are computer systems that are designed to mimic the organic neural networks seen in human 

brains. It is a network of connecting nodes inspired by the simplicity of neurons in the brain. Artificial neurons 

are a network of connected units, or nodes, that are loosely modeled after the neurons in the human brain. Each 

link, like synapses in the human brain, can transmit a signal, process it, and signal neurons attached to it [36]. In 

a recurrent neural network (RNN), the output from the previous step is supplied as input to the next step. 

Traditional neural network inputs and outputs are independent of one another [37]. 

An RNN recognizes that information evolves. Because it can recall earlier inputs, long-short-term memory 

(LSTM) is useful in time series prediction. RNNs, unlike standard neural networks, include loops to allow 

signals to travel both forward and backward through the network. Neural networks, an artificial intelligence-

based concept, are fast gaining prominence in the building of stock models. The architecture of RNN-LSTM is 

shown in Figure 1. 
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Figure 1:   The Architecture of Recurrent Neural Network (RNN-LSTM) 

The gate mechanism in an LSTM cell regulates the amount of data that can be sent through the network. The 

forget gate is located in the cell's first section and is used to control how much of the preceding cell's hidden 

state can be forgotten. The input gate is then utilized to determine what fresh information in the current cell state 

will be sorted. Finally, the output gate is utilized to find the value that will be the current cell's output. There are 

a few equations that are connected to this mechanism, as shown below [38]: 

 
ftftft

bXUhWf 
1

        (12) 

 
ititit

bXUhWi 
1

         (13) 

 
ctctct

bXUhWC 
1

tanhˆ        (14) 

ttttt
CiCfC ˆ

1


         (15) 

 
ototot

bXUhWO 
1

        (16) 

 
ttt

COH tanh          (17) 

Where ft is the forget gate value at the current cell, it is the input gate value, Ct is the current state, Ĉt is the cell 

candidate value, and Ot is the output gate value. Wf, Wi, Wc, Wo, Uf, Ui, Uc, and Uo are weights of the networks, 

bf, bi, and bc,  are bias variable values, ht is the current hidden state value, ht-1 is the prior hidden state value, and 

Xt is the new input value at the current cell. There are two activation functions (AFs) being used here, namely 

the sigmoid activation function (𝜎) and the tanh activation function. Both of them are the most frequently used 

nonlinear activation functions in artificial neural networks. 

2.5.1 Data preprocessing 

The data is divided into a training and test set with a 70:30 ratio for the training and test set, respectively. The 

training set was used to train the model, while the test set was used to test and evaluate the model. The data were 

normalized by using the feature normalization method called Min-Max normalization to enable the recurrent 
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neural network to converge very fast. The normalization was done to keep the data within the range of 0 to 1. 

The training set was further converted into an X-train and a Y-train, where the X-train is the input variable and 

the Y-train is the output variable. Next, we reshaped the data into a 3D array shape (sample, time steps, feature) 

accepted by the LSTM model. The 60-time steps were used in the LSTM-RNN. The model was then fitted to the 

training set, and evaluation was done on the test set. 

2.6 Support Vector Regression (SVM) 

Support Vector Regression is a supervised machine learning technique that finds a function that approximates 

mapping from an input domain to real values based on a training sample. It detects non-linearity in the data and 

provides a valid prediction model. Because of its ability to address nonlinear regression estimation problems, 

support vector regression is successful in time series forecasting. It has been a prominent topic of research due 

to its performance in regression tasks [5]. With the introduction of new algorithms and ideas, an increasing 

number of studies on the prediction of stock prices using machine learning algorithms have been conducted. As 

a result, stock prices can be forecasted using a support vector regression. 

The main principle behind SVM for function approximation is to execute a nonlinear mapping of the data X into 

a high-dimensional feature space, followed by a linear regression in the feature space. Given a training set of n 

data points   1, 
n

n

ii
YX  with input data 

p

i
RX  , where p is the total number of data patterns and the 

output 
p

i
RY   . The SVM function approximation is described in equation (18): 

    bXwXy T           (18) 

where, 

𝝋(X) is a high-dimensional feature space. 

 w and b are the coefficients which are estimated by minimizing the regularized function: 

   



n

i
iit

ydL
n

c
wCR

1

2

,
2

1
       (19) 

 

otherwise

ydydydL
iiiiiit

0

;,  
      (20) 

To obtain the estimation of w and b, Equation (19) is transformed to the primal function given by Equation (21) 

by the introduction of positive slack variables 𝜉 and 𝜉 *
 as follows: 

   



n

i
ii

Cw
1

*2*

2

1
w,Rminimize        (21) 
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where 

2

2

1
w is the weights vector norm. 

 di   is the desired value. 

C is referred to as regularized constant determining the tradeoff between empirical error and regularized term. 

𝜀is called a tube size of SVM. 

𝜉 and 𝜉 *  
are slack variables that allow the model not to overfit the data.  

introducing Lagrange multipliers (a and ai
*
) and exploiting the optimality constraints, the decision function 

given in equation (22) takes the following explicit form: 

 

y(X) = ∑ (𝑎𝑖 − 𝑎𝑖
∗𝑛

𝑖=1 )𝐾(𝑋𝑖 , 𝑋𝑗) + 𝑏        (22) 

 

where, 

K(Xi, Xj) is the kernel function. Some examples of the kernel function are as follows: 

Linear: K(Xi, Xj) = Xi
T
Xj          (23) 

Sigmoid: K(Xi,Xj) = tanh(ƴ Xi
T
Xj + r)        (24) 

Polynomial: K(Xi, Xj) = (ƴ Xi
T
Xj+ r)

4
,  ƴ > 0       (25) 

Radial basis function (RBF): K(Xi,Xj) = exp(-ƴ ∥ 𝑋𝑖 − 𝑋𝑗 ∥2), ƴ >0     (26) 

 

The Lagrange multipliers (a and ai
*
) that satisfy a x ai

*
= 0, ai ≥ 0 and ai

*
 ≥ 0; I =1, minimizing the dual function 

of equation 17 which has the following form: R(ai, ai
*
) = ∑ 𝑑𝑖(𝑎𝑖 − 𝑎𝑖

∗) − 𝜀 ∑ 𝑎𝑖 + 𝑎𝑖
∗) −

1

2

𝑛
𝑖=1

𝑛
𝑖=1 ∑ ∑ (𝑎𝑖 −𝑛

𝑖=1
𝑛
𝑖=1

𝑎𝑖
∗)(𝑎𝑗 − 𝑎𝑗

∗)𝐾(𝑋𝑖 , 𝑋𝑗)          (27) 

With the constraints 

∑ = ∑ 𝑎𝑖
∗

𝑛

𝑖

𝑛

𝑖=1

 

0≤ ai ≤ C, i = 1,2,…,n 

0≤ai
*
≤C, i = 1,2,…,n 

3. Results and Discussions 

This Section consists of the description of the actual series, and results of ARIMA, GARCH. LSTM-RNN and 

SVM.  
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3.1 Data Description 

 

Figure 2: Time Series plot of Microsoft Stock prices 

The Microsoft stock closing price from October 2010 to January 2023 is plotted in Figure 2. It is important to 

also observe that the price reached an all-time high between October 2021 and January 2022 before it started 

dropping. The pattern of the series suggests the presence of a trend component in the series, which means that 

the series is not stationary. To further verify the stationarity assumption, the Augmented Dickey-Fuller test, 

which tests the null hypothesis that the series is not stationary, was conducted, with the following result: 

Dickey-Fuller: Lag order = 0, p-value = 0.27. Since the p-value is > 0.05, we reject the null hypothesis and 

conclude that the Microsoft Stock closing price within the interval investigated is not stationary. 

 

Figure 3: ACF and PACF plots of the time series data 
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Since significant spikes in Figure 3 are decreasing extremely slowly (ACF plot) and there is only one significant 

spike at lag 1 (PACF plot), we conclude that the series is not stationary. Given the outcomes of the time series 

plot, ADF test, and ACF/PACF plots, we consider transforming the series to make the series stationary. The 

differencing transformation was applied to the series and reinvestigated in Figures 4 and 5, including another 

ADF test. 

 

 

Figure 4: First differencing of the time series plot 

The first differenced series re-plotted in Figure 4 shows no patterns, and the ADF test (Dickey-Fuller: lag order 

= 0, p-value =0.000) is now significant at the 5% alpha level. We therefore conclude that the series is now 

stationary. Therefore, we begin with the first step of [2]. 

3.2 ARIMA Modeling of the Microsoft Stock Market Closing Prices (Oct. 2020 – Jan. 2023) 

3.2.1 Model Identification: 

The ACF and PACF of the first differenced series are plotted in Figure 5. 

The partial autocorrelation function (PACF) (p) indicates that there are two spikes crossing the significant limit 

at lag 3 and lag 32. This indicates that the p = 2. The autocorrelation function (ACF), q, indicates 1 spike 

crossing the significant limit at lag 32. Indicating that q = 1, and since the series was differenced once, d = 1. 

Hence, the suggested identification of the ARIMA model is given as (2, 1, 1). Model comparison was performed 

with results (1,1,1), (1,1,2), and (3,1,2) to determine the model using the criteria discussed in Section 3.2.2. 

ARIMA (2,1,1) outperformed the rest and was chosen as the best model for the series. 
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Figure 5: ACF and PACF after the first differencing 

3.2.2 Model Estimation 

The parameters of the ARIMA (2,1,1) model were estimated by implementing equation (1) in Python 

programming (version 3.8) language  

Table 1: The different ARIMA Models 

 

 

 

 

Table 2: The Estimate of the coefficients of ARIMA (2, 1, 1) Model 

Terms constant AR1 AR2 MA1 

 Coefficient 0.0703 0.7580 -0.0173 -0.7916 

p-value 0.043 0.015 0.002 0.010 

Standard Error 0.161 0.311 0.055 0.308 

3.2.3 Model Diagnosis 

The errors of the model are tested to check if they are white noise by plotting as shown in Figure 6. 

Models AIC Log-likelihood BIC 

ARIMA (1,1,1) 3390.243 -1691.121 3407.604 

ARIMA (2,1,1) 3389.766 -1689.883 3411.468 

ARIMA (1,1,2) 3389.771 -1689.885 3411.473 

ARIMA (3,1,2) 3390.751 -1688.375 3421.133 
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Figure 6: The residual of white noise 

The residuals of ARIMA (2,1,1) were tested for white noise using different plots as shown in Figure 6. The 

residuals do not follow any known pattern, and the density looks normally distributed and centered at zero. 

These properties suggest that the errors are white noise and can be used for prediction. The predictive power of 

this ARIMA (2,1,1) will be compared with the ones of the GARCH model, and the best will be used to compare 

with the best machine learning model in this study. The GARCH model is implemented in Section 3.3. 

3.3 GARCH Modeling of the Microsoft Stock Market Closing Prices (Oct. 2020 to Jan. 2023) 

The GARCH model with normally distributed errors and the GARCH model with t-studentized distributed 

errors will be fitted to the series and compared in this section. The prediction power of the best GARCH model 

will be used to compare with the ARIMA (2,1,1) prediction power. 

3.3.1. Garch Model with Error Normal Distribution 

First, we need to identify volatility in the series by investigating the volatility plot in Figure 7. 

 

Figure 7: Monthly volatility of the time series data 



International Journal of Formal Sciences: Current and Future Research Trends (IJFSCFRT) - Volume 20, No  1, pp 43-68 

 

59 
 
 

Consider Figure 7. Some months have very high volatility, and some months have very low volatility, 

suggesting the stochastic model for conditional volatility. This is evidence of the presence of volatility in the 

series, but we further subjected the series to the chow test at a 10% level of significance to investigate the 

presence of structural break, which is an inferential test for volatility. The Chow test (F = 2.7148, p = 0.06819) 

shows enough evidence at the 10% level of significance that the series contains structure breaks. The Lagrange 

multiplier (LM) test for ARCH in the residuals for the Microsoft stock closing prices, which tests the null 

hypothesis that there is no ARCH up to order q, is conducted and presented in Table 3. 

Table 3: Results of the ARCH LM test for Microsoft stock prices 

Lag LM statistic p-value 

ARCH  Lag[3] 0.001604 0.9680 

ARCH Lag[5] 0.011442 0.9994 

ARCH Lag[7] 0.507811 0.9777 

Given the smaller values of the LM statistic and their corresponding large p-values up to lag 7, there is no 

evidence to conclude that there is a presence of the ARCH effect in the return series, even at the 5% significant 

level. This simply means that there may not be a need to estimate the GARCH model with normally distributed 

errors for this series. Nonetheless, the estimation is done and its results are compared with the results of 

estimation with the GARCH model of t-distributed errors. For the standard GARCH model, we specify a 

constant to mean as ARMA (0, 0) and the distribution of the conditional error term as the normal distribution. 

The weighted Ljung-Box Test for the ARMA (0, 0) series is presented in Table 4. 

Table 4: Results of the weighted Ljung-Box Test on Standardized residuals 

Lag Statistic p-value 

Lag[1] 0.5810 0.4459 

Lag[2*(p+q) + (p+q)-1][2] 0.5858 0.9437 

Lag[4*(p+q)+(p+q)-1][5] 1.0256 0.9852 

 

The statistical values of each lag and associated p-value suggest that the errors are normally distributed at the 

various lags tested in Table 4. Therefore, the parameters of the sGARCH model are estimated and presented in 

Table 5. 

From Table 5, the appropriate sGARCH model is sGARCH (1,1) with normally distributed errors and model 

information as follows: Log-Likelihood: 736.0304, AIC: -2.6716, and BIC: -2.6402. Further, we fitted the t-

distributed GARCH model to the series as given in Section 3.3.2. 
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Table 5: Estimation Results of the sGARCH model 

 Estimate Std. Error t value Pr(>|t|) 

mu 0.249396 0.003412 73.08589 0.000000 

omega 0.000190 0.000054 3.48942 0.000484 

Alpha1 0.963713 0.081338 11.84818 0.000000 

Beta1 0.035287 0.045611 0.77365 0.439141 

3.3.2 GARCH Model with Error t-Distribution 

Again, the ARCH LM test for the Microsoft stock closing prices is conducted and shown in Table 6. 

Table 6: Results of the ARCH LM test for Microsoft stock prices (t-distribution) 

Lag LM statistic p-value 

ARCH  Lag[3] 10.22 0.001390 

ARCH Lag[5] 27.08 0.000000 

ARCH Lag[7] 39.02 0.000000 

Given the high values of the LM statistic and their corresponding small p-values up to lag 7, there is evidence to 

conclude that there is the presence of an ARCH effect in the return series, even at a 1% significant level. The 

distribution of the errors is tested using the weighted Ljung-Box test in Table 7. 

Table 7: Weighted Ljung-Box Test on Standardized Residuals (t-distribution) 

Lag Statistic p-value 

Lag[1] 23.84 0.0000 

Lag[2*(p+q) + (p+q)-1][2] 58.90 0.0000 

Lag[4*(p+q)+(p+q)-1][5] 79.93 0.0000 

The statistic values of each lag and associated p-value suggest that the errors are not normally distributed at the 

various lags tested in Table 7. Having determined the presence of the ARCH effect with the t-distributed errors, 

the sGARCH model is now estimated in Table 8. 

Table 8: Estimation Results of the sGARCH model (t-distribution) 

 Estimate Std. error t value Pr(>|t|) 

mu 0.208307 0.008563 24.3258 0.000000 

omega 0.000689 0.000233 2.9551 0.003126 

Alpha1 0.961241 0.153320 6.2695 0.000000 

Beta1 0.037759 0.024180 0.1714 0.863907 
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From Table 8, the appropriate sGARCH model is sGARCH (1,1) with t-distributed errors and model 

information as follows: Log-Liklihood: 818.6406, AIC: -2.9658, and BIC: -2.9187. Now, based on the AIC, 

BIC, and log-likelihood, we compared the sGARCH with normally distributed errors and the sGARCH with t-

distributed errors in Table 9. 

Table 9: GARCH Model Comparison 

 Normal errors t-distributed errors 

AIC  -2.6716 -2.9658 

BIC  -2.6402 -2.9187 

Log Likelihood  736.0304 818.6406 

Given that the sGARCH model with t-distributed errors gave the smallest AIC and BIC but the largest log-

likelihood values, we conclude that sGARCH (1,1) with t-distributed errors is the best GARCH family model 

for the Microsoft stock closing prices. This sGARCH (1,1) with t-distributed errors is now compared with the 

best ARIMA model (2,1,1) in Table 10. 

Table 10: Comparison of ARIMA (2,1,1) and sGARCH(1,1) 

 ARIMA(2,1,1) sGARCH(1,1) 

AIC 3389.766 -2.9658 

BIC 3411.468 -2.9187 

Log Likelihood -1689.883 818.6406 

Table 10 shows that sGARCH(1,1) of t-distribution performed better than ARIMA(2,1,1)  given that it produced 

the smallest AIC and BIC values with higher Log likelihood and therefore GARCH model is chosen as the best 

traditional statistical model. 

3.4. Machine Learning Models 

This Section will show the analysis results of the two machine learning models starting with the LSTM-RNN 

and then SVM. 

3.4.1 Long Short Time Memory-Recurrent Neural Network (LSTM-RNN) 

In this paper, a four-layer LSTM-RNN network containing an input layer, two LSTM layers, and a dense layer 

was fitted to the Microsoft stock closing price data. The model summary is shown in Figure 8. 50 neurons are 

being used in the LSTM layers. For the loss function in the networks, we used the simple mean square error 

(MSE) with Adam's optimizer. The hyper-parameters, such as batch size and epochs, were tuned to get the best 

model as shown in Table 11. The built model will then be used to predict the closing price on the test set. 

However, data inversion was done to convert the predicted results into the original scaling of the data. 
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Figure 8:   Model summary of LSTM-RNN 

Figure 8 shows the model summary of the LSTM-RNN model with the input component of training data having 

dimensions or shapes (samples, time steps, features). The first shell indicates the input layer, which has 60 input 

time steps; the second and third layers are the LSTM layers, each having 50 neurons, and the last layer is the 

output layer. 

Table 11: Hyper-parameter Tuning 

 

 

 

From Table 11 above, different hyper-parameters were tuned to obtain the model with the best accuracy using 

RMSE as the evaluation metric. A model with an epoch and batch size of 200 and 32, respectively, performed 

best with an RMSE of 6.47 and was fitted to the series. The SVM model is now implemented in Section 3.4.2. 

3.4.2 Support Vector Machine (SVM) 

The data were trained using different kernels of support vector regression, with values for epsilon and the 

regularization parameter (c) of 0.4 and 1,000, respectively, [39]. The performances of the models were tested 

using the test dataset. The different kernels and their error measures are shown in Table 12. Root Mean Squared 

Error (RMSE) was used as an evaluation metric. 

 

Epochs Batch size RMSE 

50 5 6.70 

100 32 8.12 

1 1 7.892 

200 32 6.47 
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Table 12: SVM Kernels and their error measures 

Kernel 𝜀 c RMSE 

Radia Basic Function (RBF) 0.4 1000 35.15 

Polynomial 0.4 1000 35.85 

Linear 0.4 1000 32.05 

The best SVM model from Table 12 is the one with a linear kernel, error of 0.4, and cost of 1,000 because it 

produced the smallest RMSE. The best model was fitted to the series and the results compared with that of the 

LSTM-RNN. 

Table 13: Comparison of LSTM-RNN and SVM models 

 RMSE 

LSTM-RNN 6.42 

SVM 32.05 

The RMSE of LSTM-RNN in Table 13 is substantially smaller than the one produced by the best SVM model 

after tuning. Therefore, the LSTM-RNN outperformed the best SVM model and will now be used to compare 

the sGARCH (1,1) model in Table 14. 

Table 14: Comparison of LSTM-RNN and GARCH models 

 RMSE 

GARCH(1,1) of T-Distribution 12.83 

LSTM-RNN 6.47 

Table 14 shows the model comparison of the sGARCH (1,1) with t-distributed errors and LSTM-RNN models. 

LSTM-RNN outperformed the GARCH model because it has the least RMSE, but GARCH (1,1) with an RMSE 

of 12.83 outperformed the best SVM model with an RMSE of 32.05. Further, the model confidence set test 

described in [40] was used for comparing the competing models and presented in Table 15. 

Table 15: Confidence Set Test (95%) 

 LSTM-RNN ARIMA SVR GARCH 

p-value 0.7234 0.6326 0.6812 0.6581 

All the models returned their associated p-values which are all greater than 0.05 (5% alpha level) but the best 

model is the model with the highest p-value that leads to the non-rejection of the null hypothesis. In this case, 

the LSTM-RNN model is the best. Therefore, the Microsoft stock closing prices from 2020 to 2023 were 

predicted using the LSTM-RNN model in Figure 9. 
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Figure 9: Graph of Microsoft stock  prediction using LSTM-RNN 

The predicted values of the Microsoft stock closing prices from 2020–2023 using the LSTM-RNN model are 

plotted in Figure 9. The graph shows that the LSTM-RNN correctly predicted the closing prices within the 

scope of this study. Further, the forecasted Microsoft stock closing prices for the years 2023–2024 are given in 

Figure 10. 

 

Figure 10:  Forecast of Microsoft stock closing price from 2023 – 2024 

4. Summary 

In this paper, the results are summarized as follows: 

i. The Microsoft stock closing prices were fitted with the ARIMA model and the best model obtained 

was ARIMA (2,1,1) because it produced the smallest AIC, BIC, and highest Log-likelihood values 

when compared with the rest ARIMA models. 

ii. The Microsoft stock closing prices were fitted with standard GARCH models (GARCH with normally 

distributed and with t-distributed errors). The two families of GARCH models were compared. The 

sGARCH (1,1) model with t-distributed errors was chosen as the best GARCH model for the series. 
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iii. The Microsoft stock closing prices were fitted with the LSTM-RNN and the SVM models. The results 

of the two machine learning models were compared. The LSTM-RNN outperformed the SVM model 

and was chosen as the best model for the Microsoft stock closing price. 

iv. The sGARCH(1,1) with t-distributed errors model was compared with the ARIMA(2,1,1) model at first 

and then with the LSTM-RNN model that outperformed the SVM. The LSTM-RNN proved to be the 

best model, followed by the sGARCH(1,1), then the SVM, and finally the ARIMA(2,1,1) model. 

v. The future closing prices of the Microsoft stock were forecasted using the LSTM-RNN model as 

shown in Figure 10. 

5. Conclusion 

Based on the forecasted values of the Microsoft stock closing prices from 2023–2024 in Figure 10, we strongly 

recommend that stock buyers apply proper risk management before investing their money. The forecasted 

Microsoft stock closing prices ranging between the periods of March 2023, and September 2023, were 

characterized by strong support and resistance zones in the graph, price breaks in the resistance zone around 

September 2023, to make uptrend movement within a short period, then later comes back to previous support 

zones. When the price breaks up to the upside, what it breaks is the resistance level, not the support level. It is a 

support level break only when the price breaks into a downtrend. The bottom where the price touches several 

times and reverses back is the support while the 'roof' where the price touches several times and reverses is the 

Resistance. A ranging market is characterized by Support and Resistance while a trending (uptrend) market is 

characterized by Higher highs and Higher lows. From November 2023 to January 2024, we noticed an uptrend 

movement up to a price of around $275. This clearly shows the volatile nature of the financial market. Investors 

are therefore advised to apply proper risk and money management before investing their money. In this study, 

we used historical data of Microsoft stock closing prices. Other factors such as news, political factors, natural 

calamities, etc. affect the financial market; such factors should be taken into consideration before investing in 

the stock market. The findings of this study have revalidated the claims of [12] and [13] that the LSTM-RNN 

model can be used to predict volatile financial series. According to [18], LSTM-RNN outperforms SVM in 

predicting volatile series yet again. Given that LSTM-RNN outperformed other models in this study and agrees 

with [20] findings, we conclude that LSTM-RNN is capable of tracking and forecasting stock market 

movements with high accuracy. However, this research is limited to Microsoft stock close prices for a period of 

27 months, from September 2020 to December 2022, thus this conclusion is only applicable within this scope. 
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