“Materionics”—A New Term for the World of Science, Engineering, and Technology


  • M. Hossein Siadati Materials Science and Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
  • Mohsen Mirzaee-Sisan Materials Science and Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran


Materionics, electronic materials, functional materials


The advent of functional materials yielding electro-ceramics, electro-polymers, piezo-electrics, semi-conductors, nano-biomaterials, and other electro-material concepts has undergone the focus of many scientific and creative endeavors. In favor of creating and defining a term covering under its umbrella all of these concepts, we propose the designation Materionics taken from the first and second halves of the two words “materials” and “electronics,” respectively. The ever-growing trend of overlapping activities in the two engineering fields of Materials Science and Electronics accentuates this necessity. With the introduction of Materionics, once it has flourished, we expect that a new wave of understanding will engulf and overtake the scholars of this new field and that their contributions in the disciplines having overlaps will be most synergistic. Inevitably, goods and services that Materionics could yield will expeditiously become ubiquitous in modern life and civilization.


P. M. Vilarinho, “Functional Materials: Properties, Processing and Applications,” Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials, pp. 3–33, Jul. 2005, doi: 10.1007/1-4020-3019-3_1.

R. Dorey, Ceramic thick films for MEMS and microdevices. 2011. Accessed: Dec. 19, 2022. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=J4eqjGWxEPMC&oi=fnd&pg=PP1&dq=2.%09R.+Dorey,+Ceramic+Thick+Films+for+MEMS+and+Microdevices+&ots=GbuqyunTeP&sig=u34tJyfQ1mnhibXS8fC2kfUSmfE

S. Banerjee and A. Tyagi, “Functional materials: preparation, processing and applications,” 2011, Accessed: Dec. 19, 2022. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=FVvU6QhAt3YC&oi=fnd&pg=PP1&dq=Functional+Materials:+Preparation,+Processing+and+Applications+&ots=Q_NDxKItoy&sig=_Ew0t6ddTwn0CvvyCpXACaH9P3I

R. Pandey, Fundamentals of electroceramics: materials, devices, and applications. 2019. Accessed: Dec. 19, 2022. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=LfF5DwAAQBAJ&oi=fnd&pg=PR13&dq=Fundamentals+of+Electroceramics:+Materials,+Devices,+and+Applications+&ots=p20CDgy1nO&sig=pjLjy04Rin4HPAtMPl6rc25DikM

V. F.-A. microbiology and biotechnology and undefined 2005, “Natural polysaccharides as electroactive polymers,” Springer, vol. 67, no. 6, pp. 735–745, Jun. 2005, doi: 10.1007/s00253-005-1931-4.

M. C. Sekhar, E. Veena, N. S. Kumar, K. C. B. Naidu, A. Mallikarjuna, and D. B. Basha, “A Review on Piezoelectric Materials and Their Applications,” Crystal Research and Technology, 2022, doi: 10.1002/CRAT.202200130.

A. Behera, “Advanced Semiconductor/Conductor Materials,” Advanced Materials, pp. 557–596, 2022, doi: 10.1007/978-3-030-80359-9_16.

S. Ramakrishna, M. Ramalingam, and T. Kumar, Biomaterials: a nano approach. 2016. Accessed: Dec. 19, 2022. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=mobLBQAAQBAJ&oi=fnd&pg=PP1&dq=8.%09S.+Ramakrishna,+M.+Ramalingam,+T.+S.+S.+Kumar,+W.+O.+Soboyejo,+Biomaterials:+a+nano+approach.&ots=WlVVm0hnDE&sig=dcjeRfhCvTekZepBJgGfqDoWIEw

M. M.-C. and Q. Gravity and undefined 2015, “Milestones of general relativity: Hubble’s law (1929) and the expansion of the universe,” iopscience.iop.org, Accessed: Dec. 19, 2022. [Online]. Available: https://iopscience.iop.org/article/10.1088/0264-9381/32/12/124002/meta

S. Singh, S. K. Modak, and T. Padmanabhan, “Evolution of quantum field, particle content, and classicality in the three stage universe,” Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 88, no. 12, Dec. 2013, doi: 10.1103/PHYSREVD.88.125020.

J. C. S. Neves, “Bouncing cosmology inspired by regular black holes,” Gen Relativ Gravit, vol. 49, no. 9, Sep. 2017, doi: 10.1007/S10714-017-2288-6.

A. S.-G.-P. chemistry and physics and undefined 1980, “The living state and cancer.,” europepmc.org, Accessed: Dec. 19, 2022. [Online]. Available: https://europepmc.org/article/med/6254102

T. S.-I. J. of Yoga and undefined 2017, “Electrons in biology,” ncbi.nlm.nih.gov, Accessed: Dec. 19, 2022. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793004/

T. Nezakati, A. Seifalian, A. Tan, and A. M. Seifalian, “Conductive Polymers: Opportunities and Challenges in Biomedical Applications,” Chem Rev, vol. 118, no. 14, pp. 6766–6843, Jul. 2018, doi: 10.1021/ACS.CHEMREV.6B00275.

R. J. P. Williams, “Electron transfer in biology,” Mol Phys, vol. 68, no. 1, pp. 1–23, 1989, doi: 10.1080/00268978900101931.

W. Zakrzewski, M. Dobrzy?ski, A. Z.-K.- Materials, and undefined 2021, “Nanomaterials application in endodontics,” mdpi.com, Accessed: Dec. 20, 2022. [Online]. Available: https://www.mdpi.com/1270760

Y. Engel, J. D. Schiffman, J. M. Goddard, and V. M. Rotello, “Nanomanufacturing of biomaterials,” Materials Today, vol. 15, no. 11, pp. 478–485, Nov. 2012, doi: 10.1016/S1369-7021(12)70217-1.

W. Cottingham and D. Greenwood, An introduction to the standard model of particle physics. 2007. Accessed: Dec. 20, 2022. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=Dm36BYq9iu0C&oi=fnd&pg=PA1&dq=18.%09W.+N.+Cottingham,+D.+A.+Greenwood,+An+Introduction+to+the+Standard+Model+of+Particle+Physics+(Cambridge+University+Press,+Cambridge,+ed.+2,+2007(.&ots=boDf171sPC&sig=5xG6iRa2xOIdgwotoCLpRUi1xL8

A. Pontzen, F. G.- Nature, and undefined 2014, “Cold dark matter heats up,” nature.com, 2014, Accessed: Dec. 20, 2022. [Online]. Available: https://www.nature.com/articles/nature12953

E. Papantonopoulos, The invisible universe: dark matter and dark energy. 2007. Accessed: Dec. 20, 2022. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=hTOZfGqriikC&oi=fnd&pg=PA2&dq=+Dark+Matter+and+Dark+Energy+book&ots=T4paLlpZ5O&sig=tUmv11Pn5aa6zUyEycttXgo-E2I

V. v. Ranade and S. S. Joshi, “Catalysis and Catalytic Processes,” Industrial Catalytic Processes for Fine and Specialty Chemicals, pp. 1–14, Jan. 2016, doi: 10.1016/B978-0-12-801457-8.00001-X.

R. S.-A. C. A. General and undefined 2004, “Future trends in the refining catalyst market,” Elsevier, Accessed: Dec. 20, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0926860X03010007

J. Richardson, Principles of catalyst development. 2013. Accessed: Dec. 20, 2022. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=GTIBCAAAQBAJ&oi=fnd&pg=PA1&dq=Principles+of+Catalyst+Development+book&ots=Oeh96HpVBL&sig=VdU_81Id4rVV60gO5_mL1ZAmkL8

T. W.-A. in Catalysis and undefined 1960, “The electron theory of catalysis on semiconductors,” Elsevier, Accessed: Dec. 20, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360056408606033

W. Sun, B. Peppley, K. K.-E. acta, and undefined 2005, “An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters,” Elsevier, Accessed: Dec. 20, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0013468604012228

L. Falicov, G. S.-P. of the National, and undefined 1985, “Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: Theory and experimental evidence,” National Acad Sciences, vol. 82, pp. 2207–2211, 2022, Accessed: Dec. 20, 2022. [Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.82.8.2207

J. Vigoureux, D. C.-A. Optics, and undefined 1992, “Detection of nonradiative fields in light of the Heisenberg uncertainty principle and the Rayleigh criterion,” opg.optica.org, Accessed: Dec. 20, 2022. [Online]. Available: https://opg.optica.org/abstract.cfm?uri=ao-31-16-3170

W. Yao, X. Xu, H. Wang, J. Zhou, … X. Y.-A. C. B., and undefined 2004, “Photocatalytic property of perovskite bismuth titanate,” Elsevier, Accessed: Dec. 20, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0926337304002516

R. F.-Found. Phys. and undefined 1986, “Quantum mechanical computers.,” cs.princeton.edu, Accessed: Dec. 20, 2022. [Online]. Available: http://www.cs.princeton.edu/courses/archive/fall05/frs119/papers/feynman85_optics_letters.pdf

… P. S.-35th annual symposium on foundations of computer and undefined 1994, “Algorithms for quantum computation: discrete logarithms and factoring,” ieeexplore.ieee.org, Accessed: Dec. 20, 2022. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/365700/

P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Review, vol. 41, no. 2, pp. 303–332, 1999, doi: 10.1137/S0036144598347011.

M. Zalba, J. Haigh, T. Yang, L. I.-H. Review, and undefined 2019, “Quantum Computing Using Silicon Transistors,” vitacastle.com, Accessed: Dec. 20, 2022. [Online]. Available: https://www.vitacastle.com/rev/archive/2019/r2019_04/pdf/P138-142_R4c03.pdf

M. Horowitz and E. Grumbling, Quantum computing: progress and prospects. 2019. Accessed: Dec. 20, 2022. [Online]. Available: https://catalog.lib.kyushu-u.ac.jp/ja/recordID/5010239/

B. Schumacher, “Quantum coding,” Phys Rev A (Coll Park), vol. 51, no. 4, pp. 2738–2747, 1995, doi: 10.1103/PHYSREVA.51.2738.

S. Akama, Elements of quantum computing. 2015. Accessed: Dec. 20, 2022. [Online]. Available: https://link.springer.com/content/pdf/10.1007/978-3-319-08284-4.pdf

A. Khalid, “A Gentle Introduction to Quantum Computing,” 2012, Accessed: Dec. 20, 2022. [Online]. Available: https://www.physlab.org/wp-content/uploads/2016/03/Abdullah-Khalid.pdf

R. Vrijen et al., “Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures,” Phys Rev A, vol. 62, no. 1, p. 10, 2000, doi: 10.1103/PHYSREVA.62.012306.

E. D. Kirson et al., “Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors,” Proc Natl Acad Sci U S A, vol. 104, no. 24, pp. 10152–10157, Jun. 2007, doi: 10.1073/PNAS.0702916104.

E. Kirson, Z. Gurvich, R. Schneiderman, E. D.-C. research, and undefined 2004, “Disruption of cancer cell replication by alternating electric fields,” AACR, Accessed: Dec. 20, 2022. [Online]. Available: https://aacrjournals.org/cancerres/article-abstract/64/9/3288/517864

D. F. Mollenkopf, K. E. Kleinhenz, J. A. Funk, W. A. Gebreyes, and T. E. Wittum, “Salmonella enterica and Escherichia coli harboring bla CMY in retail beef and pork products,” Foodborne Pathog Dis, vol. 8, no. 2, pp. 333–336, Feb. 2011, doi: 10.1089/FPD.2010.0701.

S. Luchsinger, D. Kropf, … C. Z.-J. of F., and undefined 1996, “Color and oxidative rancidity of gamma and electron beam?irradiated boneless pork chops,” Wiley Online Library, Accessed: Dec. 20, 2022. [Online]. Available: https://ift.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2621.1996.tb10920.x

G. Feng, L. Liu, W. Cui, F. W.-C. P. B, and undefined 2020, “Electron beam irradiation on novel coronavirus (COVID-19): A Monte–Carlo simulation,” iopscience.iop.org, Accessed: Dec. 20, 2022. [Online]. Available: https://iopscience.iop.org/article/10.1088/1674-1056/ab7dac/meta

Data USA: Materials Engineers, https://datausa.io/profile/soc/materials-engineers (2018).




How to Cite

M. Hossein Siadati, & Mohsen Mirzaee-Sisan. (2023). “Materionics”—A New Term for the World of Science, Engineering, and Technology. International Journal of Formal Sciences: Current and Future Research Trends, 17(1), 1–11. Retrieved from https://ijfscfrtjournal.isrra.org/index.php/Formal_Sciences_Journal/article/view/761