Buckyball Derivatives as Acceptors in Organic Photovoltaics: A Review

Authors

  • Rina Muhammad Faisal Technische Universität Kaiserslautern, Fachbereich Physik, Erwin Schrödinger Str. 46, 67663 Kaiserslautern, Rhineland Palatinate, Germany

Keywords:

bisPCBM, Fullerene, Fullerene Derivatives, Organic Acceptors, Organic Photovoltaics, Organic Solar Cells, PCBM, Power Conversion Efficiency

Abstract

Organic materials are a focus of primary attention in the field of organic photovoltaics (OPV) due to low cost (in terms of fabrication, operation, and maintenance), high portability, quick production, and mechanical flexibility. Buckyball derivatives play a prominent role as acceptors in these devices. They are investigated in combination with various organic donor polymers to increase power conversion efficiency (PCE) of OPV devices. This review gives an extensive insight about buckyball derivatives in organic photovoltaics (OPV) under three sections. The first section gives a broad overview on types of organic solar cells and how PCE can be improved by finetuning nine factors. The second section explores classification of buckyball derivatives and their properties. In the final section, the roles of key buckyball derivatives such as C60, PC60BM, PC70BM, bisPCBM, [60]IPB, ICBA, [60]PCBH in the field of OPV are discussed.

References

S. Gunes, H. Neugebauer, and N. S. Sariciftci, “Conjugated Polymer-Based Organic Solar Cells,” Chem. Rev., vol. 107, p. 1324−1338, 2007.

M. Stephen, K. Genevicius, G. Juška, K. Arlauskas, and R. C. Hiornsc, “Charge transport and its characterization using photo-CELIV in bulk heterojunction solar cells,” Polym. Int., vol. 66, no. 13–25, 2017, doi: 10.1002/pi.5274.

B. C. Thompson and J. M. J. Fréchet, “Polymer-fullerene composite solar cells,” Angew Chem Int Ed Engl, vol. 47, no. 1, pp. 58–77, 2008, doi: 10.1002/anie.200702506.

B. G. Sumpter and V. Meunier, “Can computational approaches aid in untangling the inherent complexity of practical organic photovoltaic systems?,” J. Polym. Sci. Part B Polym. Phys., vol. 50, no. 15, pp. 1071–1089, Aug. 2012, doi: 10.1002/polb.23075.

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. de Boer, “Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years),” Polym. Rev., vol. 48, no. 3, pp. 531–582, Aug. 2008, doi: 10.1080/15583720802231833.

D. Beljonne, J. Cornil, L. Muccioli, C. Zannoni, J.-L. Brédas, and F. Castet, “Electronic Processes at Organic−Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices †,” Chem. Mater., vol. 23, no. 3, pp. 591–609, Feb. 2011, doi: 10.1021/cm1023426.

C.-K. Lee, C.-W. Pao, and C.-W. Chu, “Multiscale molecular simulations of the nanoscale morphologies of P3HT:PCBM blends for bulk heterojunction organic photovoltaic cells,” Energy Environ. Sci., vol. 4, no. 10, p. 4124, 2011, doi: 10.1039/c1ee01508g.

L. Dou et al., “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics, vol. 6, no. 3, pp. 180–185, Feb. 2012, doi: 10.1038/nphoton.2011.356.

H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res., vol. 19, no. 07, pp. 1924–1945, Mar. 2011, doi: 10.1557/JMR.2004.0252.

M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. C Photochem. Rev., vol. 4, no. 2, pp. 145–153, Oct. 2003, doi: 10.1016/S1389-5567(03)00026-1.

A. Goetzberger and C. Hebling, “Photovoltaic materials, past, present, future,” Sol. Energy Mater. Sol. Cells, vol. 62, no. 1–2, pp. 1–19, Apr. 2000, doi: 10.1016/S0927-0248(99)00131-2.

M. C. Scharber et al., “Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency,” Adv. Mater., vol. 18, no. 6, pp. 789–794, Mar. 2006, doi: 10.1002/adma.200501717.

B. D. Wohrle and D. Meissner, “Organic Solar Cells **,” Adv. Mater., vol. 3, pp. 129–138, 1991.

G. A. Chamberlain, “Organic solar cells: A review,” Sol. Cells, vol. 8, no. 1, pp. 47–83, Feb. 1983, doi: 10.1016/0379-6787(83)90039-X.

C. J. Brabec, J. A. Hauch, P. Schilinsky, and C. Waldauf, “Production Aspects of Organic Photovoltaics and Commercialization of Devices,” MRS Bull., vol. 30, no. January, pp. 50–52, 2005.

M. T. Dang, L. Hirsch, and G. Wantz, “P3HT:PCBM, Best Seller in Polymer Photovoltaic Research,” Adv. Mater., vol. 23, no. 31, pp. 3597–3602, Aug. 2011, doi: 10.1002/adma.201100792.

S. K. M. Haque et al., “Polymeric materials for conversion of electromagnetic waves from the sun to electric power,” Polymers (Basel)., vol. 10, no. 3, 2018, doi: 10.3390/polym10030307.

F. Zhang, O. Inganäs, Y. Zhou, and K. Vandewal, “Development of polymer-fullerene solar cells,” Natl. Sci. Rev., vol. 3, pp. 222–239, 2016, doi: 10.1093/nsr/nww020.

C.-H. Chou, W. L. Kwan, Z. Hong, L.-M. Chen, and Y. Yang, “A metal-oxide interconnection layer for polymer tandem solar cells with an inverted architecture.,” Adv. Mater., vol. 23, no. 10, pp. 1282–6, Mar. 2011, doi: 10.1002/adma.201001033.

J. Y. Kim et al., “Efficient tandem polymer solar cells fabricated by All-Solution Processing,” Science (80-. )., vol. 317, no. July, pp. 222–225, 2007.

J. Gilot, M. M. Wienk, and R. A. J. Janssen, “Optimizing polymer tandem solar cells.,” Adv. Mater., vol. 22, no. 8, pp. E67-71, Feb. 2010, doi: 10.1002/adma.200902398.

S. Sista et al., “Highly efficient tandem polymer photovoltaic cells.,” Adv. Mater., vol. 22, no. 3, pp. 380–3, Jan. 2010, doi: 10.1002/adma.200901624.

B. C. J. Brabec et al., “Origin of the Open Circuit Voltage of Plastic Solar Cells,” Adv. Funct. Mater., vol. 11, no. 5, pp. 374–380, 2001.

B. J. Liu, Y. Shi, and Y. Yang, “Solvation-Induced Morphology Effects on the Performance of Polymer-Based Photovoltaic Devices **,” no. 6, pp. 2–6, 2001.

H. Frohne, S. E. Shaheen, C. J. Brabec, D. C. Müller, N. S. Sariciftci, and K. Meerholz, “Influence of the anodic work function on the performance of organic solar cells.,” Chemphyschem, vol. 3, no. 9, pp. 795–9, Sep. 2002, doi: 10.1002/1439-7641(20020916)3:9<795::AID-CPHC795>3.0.CO;2-A.

A. Gadisa, M. Svensson, M. R. Andersson, and O. Inganäs, “Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative,” Appl. Phys. Lett., vol. 84, no. 9, p. 1609, 2004, doi: 10.1063/1.1650878.

K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, and J. V Manca, “On the origin of the open-circuit voltage of polymer-fullerene solar cells.,” Nat. Mater., vol. 8, no. 11, pp. 904–9, Nov. 2009, doi: 10.1038/nmat2548.

L. Huo, J. Hou, S. Zhang, H.-Y. Chen, and Y. Yang, “A polybenzo[1,2-b:4,5-b’]dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells.,” Angew. Chem. Int. Ed. Engl., vol. 49, no. 8, pp. 1500–3, Feb. 2010, doi: 10.1002/anie.200906934.

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater., vol. 21, no. 13, pp. 1323–1338, Apr. 2009, doi: 10.1002/adma.200801283.

A. C. Morteani et al., “Barrier-Free Electron–Hole Capture in Polymer Blend Heterojunction Light-Emitting Diodes,” Adv. Mater., vol. 15, no. 20, pp. 1708–1712, Oct. 2003, doi: 10.1002/adma.200305618.

B. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic Solar Cells,” Adv. Funct. Mater., vol. 11, no. 1, pp. 15–26, 2001.

J. J. M. Halls et al., “Efficient photodiodes from interpenetrating polymer networks,” Nature, vol. 376, no. 6540, pp. 498–500, Aug. 1995, doi: 10.1038/376498a0.

A. C. Arias et al., “Photovoltaic Performance and Morphology of Polyfluorene Blends: A Combined Microscopic and Photovoltaic Investigation,” Macromolecules, vol. 34, no. 17, pp. 6005–6013, Aug. 2001, doi: 10.1021/ma010240e.

J.-L. Brédas, D. Beljonne, V. Coropceanu, and J. Cornil, “Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture.,” Chem. Rev., vol. 104, no. 11, pp. 4971–5004, Nov. 2004, doi: 10.1021/cr040084k.

R. B. Ross et al., “Endohedral fullerenes for organic photovoltaic devices.,” Nat. Mater., vol. 8, no. 3, pp. 208–12, Mar. 2009, doi: 10.1038/nmat2379.

M. Lenes, G.-J. a. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, “Fullerene Bisadducts for Enhanced Open-Circuit Voltages and Efficiencies in Polymer Solar Cells,” Adv. Mater., vol. 20, no. 11, pp. 2116–2119, Jun. 2008, doi: 10.1002/adma.200702438.

F. Zhang et al., “High photovoltage achieved in low band gap polymer solar cells by adjusting energy levels of a polymer with the LUMOs of fullerene derivatives,” J. Mater. Chem., vol. 18, no. 45, p. 5468, Dec. 2008, doi: 10.1039/b811957k.

Y. Liang, D. Feng, Y. Wu, S. Tsai, G. Li, and C. Ray, “Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties,” J Am. Chem. Soc, pp. 7792–7799, 2009.

L. J. a. Koster, V. D. Mihailetchi, and P. W. M. Blom, “Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells,” Appl. Phys. Lett., vol. 88, no. 9, p. 093511, 2006, doi: 10.1063/1.2181635.

L. Koster, E. Smits, V. Mihailetchi, and P. Blom, “Device model for the operation of polymer/fullerene bulk heterojunction solar cells,” Phys. Rev. B, vol. 72, no. 8, p. 085205, Aug. 2005, doi: 10.1103/PhysRevB.72.085205.

P. Panda, D. Veldman, J. Sweelssen, J. J. A. M. Bastiaansen, B. M. W. Langeveld-Voss, and S. C. J. Meskers, “Charge transfer absorption for pi-conjugated polymers and oligomers mixed with electron acceptors.,” J. Phys. Chem. B, vol. 111, no. 19, pp. 5076–81, May 2007, doi: 10.1021/jp070796p.

K. Tvingstedt, K. Vandewal, A. Gadisa, F. Zhang, J. Manca, and O. Inganäs, “Electroluminescence from charge transfer states in polymer solar cells.,” J. Am. Chem. Soc., vol. 131, no. 33, pp. 11819–24, Aug. 2009, doi: 10.1021/ja903100p.

D. Veldman et al., “Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends.,” J. Am. Chem. Soc., vol. 130, no. 24, pp. 7721–35, Jun. 2008, doi: 10.1021/ja8012598.

K. Vandewal et al., “The Relation Between Open‐Circuit Voltage and the Onset of Photocurrent Generation by Charge‐Transfer Absorption in Polymer : Fullerene Bulk Heterojunction Solar Cells,” Adv. Funct. Mater., vol. 18, no. 14, pp. 2064–2070, Jul. 2008, doi: 10.1002/adfm.200800056.

W. J. Potscavage, S. Yoo, and B. Kippelen, “Origin of the open-circuit voltage in multilayer heterojunction organic solar cells,” Appl. Phys. Lett., vol. 93, no. 19, p. 193308, 2008, doi: 10.1063/1.3027061.

D. Venkataraman, S. Yurt, B. H. Venkatraman, and N. Gavvalapalli, “Role of Molecular Architecture in Organic Photovoltaic Cells,” J. Phys. Chem. Lett., vol. 1, no. 6, pp. 947–958, Mar. 2010, doi: 10.1021/jz1000819.

M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices.,” J. Am. Chem. Soc., vol. 131, no. 26, pp. 9281–6, Jul. 2009, doi: 10.1021/ja9007722.

M. A. Loi, S. Toffanin, M. Muccini, M. Forster, U. Scherf, and M. Scharber, “Charge Transfer Excitons in Bulk Heterojunctions of a Polyfluorene Copolymer and a Fullerene Derivative,” Adv. Funct. Mater., vol. 17, no. 13, pp. 2111–2116, Sep. 2007, doi: 10.1002/adfm.200601098.

B. Rand, D. Burk, and S. Forrest, “Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells,” Phys. Rev. B, vol. 75, no. 11, p. 115327, Mar. 2007, doi: 10.1103/PhysRevB.75.115327.

K. Kumar, A. Das, U. K. Kumawat, and A. Dhawan, “Tandem organic solar cells containing plasmonic nanospheres and nanostars for enhancement in short circuit current density,” Opt. Express, vol. 27, no. 22, pp. 31599–31620, 2019, doi: https://doi.org/10.1364/OE.27.031599.

F. H. Pengjie Chao, Longzhu Liu, Jianfei Qu, Qiming He, Shenglong Gan, Hong Meng, Wei Chen, “Overcoming the Trade-off between V oc and J sc : Asymmetric Chloro- Substituted Two-Dimensional Benzo [ 1 , 2-b : 4 , 5-b ′] dithiophene-based,” Dye. Pigment., vol. 162, pp. 746–754, 2019, doi: https://doi.org/10.1016/j.dyepig.2018.10.071.

V. A. Trukhanov, V. V Bruevich, and D. Y. Paraschuk, “Fill factor in organic solar cells can exceed the Shockley-Queisser limit,” Sci. Repports, no. June, 2015, doi: 10.1038/srep11478.

C. Yang, N. Liang, L. Ye, H. Ade, X. Yuan, and J. Hou, “Enhanced JSC of P3HT-based non-fullerene polymer solar cells by modulating aggregation effect of P3HT in solution state,” Org. Electron., vol. 68, pp. 15–21, 2019, doi: https://doi.org/10.1016/j.orgel.2019.01.047.

Z. Wang et al., “Organic Solar Cells Based on High Hole Mobility Conjugated Polymer and Nonfullerene Acceptor with Comparable Bandgaps and Suitable Energy Level Offsets Showing Significant Suppression of Jsc–Voc Trade‐Off,” Sol. RRL, vol. 3, no. 7, p. 1900079, 2019, doi: https://doi.org/10.1002/solr.201900079.

J. Wang et al., “A thiophene-fused benzotriazole unit as a ‘π-bridge’ in A-π-D-π-A type acceptor to achieve more balanced JSC and VOC for OSCs,” Org. Electron., vol. 82, p. 105705, 2020, doi: https://doi.org/10.1016/j.orgel.2020.105705.

P. Schilinsky, “Simulation of light intensity dependent current characteristics of polymer solar cells,” J. Appl. Phys., vol. 95, no. 5, p. 2816, 2004, doi: 10.1063/1.1646435.

D. Kiermasch, L. Gil-Escrig, H. J. Bolink, and K. Tvingstedt, “Effects of Masking on Open-Circuit Voltage and Fill Factor in Solar Cells,” Joule, vol. 3, pp. 16–26, 2019, doi: 10.1016/j.joule.2018.10.016.

J.-L. Brédas, J. E. Norton, J. Cornil, and V. Coropceanu, “Molecular understanding of organic solar cells: the challenges.,” Acc. Chem. Res., vol. 42, no. 11, pp. 1691–1699, Nov. 2009, doi: 10.1021/ar900099h.

O. Stenzel, L. J. A. Koster, R. Thiedmann, S. D. Oosterhout, R. a. J. Janssen, and V. Schmidt, “A New Approach to Model-Based Simulation of Disordered Polymer Blend Solar Cells,” Adv. Funct. Mater., vol. 22, no. 6, pp. 1236–1244, Mar. 2012, doi: 10.1002/adfm.201102095.

H. Hoppe and N. S. Sariciftci, “Morphology of polymer/fullerene bulk heterojunction solar cells,” J. Mater. Chem., vol. 16, no. 1, p. 45, 2006, doi: 10.1039/b510618b.

R. C. Nieuwendaal et al., “Measuring Domain Sizes and Compositional Heterogeneities in P3HT-PCBM Bulk Heterojunction Thin Films with 1H Spin Diffusion NMR Spectroscopy,” Adv. Funct. Mater., vol. 22, no. 6, pp. 1255–1266, Mar. 2012, doi: 10.1002/adfm.201102138.

I. Osaka, M. Saito, H. Mori, T. Koganezawa, and K. Takimiya, “Drastic change of molecular orientation in a thiazolothiazole copolymer by molecular-weight control and blending with PC61BM leads to high efficiencies in solar cells.,” Adv. Mater., vol. 24, no. 3, pp. 425–30, Jan. 2012, doi: 10.1002/adma.201103065.

R. A. Marsh, J. M. Hodgkiss, S. Albert-Seifried, and R. H. Friend, “Effect of annealing on P3HT:PCBM charge transfer and nanoscale morphology probed by ultrafast spectroscopy.,” Nano Lett., vol. 10, no. 3, pp. 923–30, Mar. 2010, doi: 10.1021/nl9038289.

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology,” Adv. Funct. Mater., vol. 15, no. 10, pp. 1617–1622, Oct. 2005, doi: 10.1002/adfm.200500211.

G. Grancini, D. Polli, D. Fazzi, J. Cabanillas-gonzalez, G. Cerullo, and G. Lanzani, “Transient Absorption Imaging of P3HT : PCBM Photovoltaic Blend :,” J. Phys. Chem. Lett., vol. 2, pp. 1099–1105, 2011.

S. Berson, R. De Bettignies, S. Bailly, and S. Guillerez, “Poly(3-hexylthiophene) Fibers for Photovoltaic Applications,” Adv. Funct. Mater., vol. 17, no. 8, pp. 1377–1384, May 2007, doi: 10.1002/adfm.200600922.

V. D. Mihailetchi et al., “Origin of the enhanced performance in poly(3-hexylthiophene): [6,6]-phenyl C[sub 61]-butyric acid methyl ester solar cells upon slow drying of the active layer,” Appl. Phys. Lett., vol. 89, no. 1, p. 012107, Jul. 2006, doi: 10.1063/1.2212058.

C. Melis, L. Colombo, and A. Mattoni, “Self-Assembling of Poly(3-hexylthiophene),” J. Phys. Chem. C, vol. 115, no. 2, pp. 576–581, Jan. 2011, doi: 10.1021/jp109175b.

S. Dag and L.-W. Wang, “Packing structure of poly(3-hexylthiophene) crystal: ab initio and molecular dynamics studies.,” J. Phys. Chem. B, vol. 114, no. 18, pp. 5997–6000, May 2010, doi: 10.1021/jp1008219.

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, vol. 318, pp. 162–163, 1985, doi: https://doi.org/10.1038/318162a0.

E. Ulloa, “Fullerenes and their Applications in Science and Technology,” Introd. to Nanotechnol. Conf., pp. 1–5, 2013.

H. Prinzbach et al., “Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20,” Nature, vol. 407, pp. 60–63, 2000.

J. Coro, M. Suarez, L. S. R. Silva, K. I. B. Eguiluz, and G. R. Salazar-Banda, “Fullerene applications in fuel cells : A review,” Int. J. Hydrogen Energy, vol. 4, no. I, pp. 17944–17959, 2016, doi: 10.1016/j.ijhydene.2016.08.043.

S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56–58, 1991.

C. Wang, Z. X. Guo, S. Fu, W. Wu, and D. Zhu, “Polymers containing fullerene or carbon nanotube structures,” Prog. Polym. Sci., vol. 29, no. 11, pp. 1079–1141, 2004, doi: 10.1016/j.progpolymsci.2004.08.001.

H. Vojoudi, A. Badiei, S. Bahar, G. M. Ziarani, F. Faridbod, and M. R. Ganjali, “A new nano-sorbent for fast and efficient removal of heavy metals from aqueous solutions based on modification of magnetic mesoporous silica nanospheres,” J. Magn. Magn. Mater., vol. 441, pp. 193–203, 2017, doi: 10.1016/j.jmmm.2017.05.065.

A. Fakhria, S. J. Gilani, S. S. Imam, and Chandrakala, “Formulation of thymoquinone loaded chitosan nano vesicles: In-vitro evaluation and in-vivo anti-hyperlipidemic assessment,” J. Drug Deliv. Sci. Technol., vol. 50, pp. 339–346, 2019, doi: https://doi.org/10.1016/j.jddst.2019.01.033.

Y. Ge, M. I. U. Hoque, and Q. Qu, “1D Hematite-[α-Fe2O3]-nanorods prepared by green fabrication for supercapacitor electrodes,” Electrochem. Energy Technol., vol. 5, no. 1, pp. 1–6, 2019, doi: https://doi.org/10.1515/eetech-2019-0001.

M. H. Kabir and K. S. Kwak, “Electromagnetic Nanonetworks,” in 21st Century Nanoscience – A Handbook, 1st Editio., K. D. Sattler, Ed. CRC Press, 2019.

S. Albohani, M. M. Sundaram, and D. W. Laird, “Egg shell membrane template stabilises formation of β-NiMoO4 nanowires and enhances hybrid supercapacitor behaviour,” Mater. Lett., vol. 236, pp. 64–68, 2019, doi: https://doi.org/10.1016/j.matlet.2018.10.034.

L. Zhou, M. H. Saeed, and L. Zhang, “Optical diffusers based on uniform nano-sized polymer balls/nematic liquid crystals composite films,” Liq. Cryst., vol. 47, no. 1, pp. 1–14, doi: https://doi.org/10.1080/02678292.2019.1679901.

M. Knupfer, “Electronic properties of carbon nanostructures,” Surf. Sci. Rep., vol. 42, pp. 1–74, 2001.

P. W. Stephens, “Physics & Chemistry of Fullerenes: A Reprint Collection,” Reprint., World Scientific, 1993, pp. 73–75.

O. V. Boltalina, I. N. Ioffe, L. N. Sidorov, G. Seifert, and K. Vietze, “Ionization Energy of Fullerenes,” J. Am. Chem. Soc., vol. 122, no. 40, pp. 9745–9749, 2000.

F. Langa and P. de la Cruz, “Basic principles of the chemical rectivity of Fullerenes,” in Fullerenes: Principles and Applications, F. Langa, F. L. D. La Puente, and J.-F. Nierengarten, Eds. RSC Publishing, 2007, pp. 15–50.

R. Taylor, “The Chemistry Of Fullerenes,” World Scientific, 1995, pp. 202–272.

J. V. Yakhmi, “Materials contributing to physics of superconductivity, or holding potential for applications,” in Superconducting Materials and Their Applications, IOP Publishing Ltd, 2021, pp. 3–1 to 3–18.

D. Smazna et al., “Buckminsterfullerene hybridized zinc oxide tetrapods: defects and charge transfer induced optical and electrical response †,” Nanoscale, vol. 10, pp. 10050–10062, 2018, doi: 10.1039/c8nr01504j.

M. Shi, L. Bi, X. Huang, Z. Meng, Y. Wang, and Z. Yang, “Design of three-dimensional nanotube-fullerene-interconnected framework for hydrogen storage,” Appl. Surf. Sci., vol. 534, p. 147606, 2020, doi: 10.1016/J.APSUSC.2020.147606.

V. Morales, A. Martín, J. Ortiz-Bustos, R. Sanz, and R. A. García-MuñOz, “Effect of the dual incorporation of fullerene and polyethyleneimine moieties into SBA-15 materials as platforms for drug delivery,” J. Mater. Sci., vol. 54, pp. 11635–11653, 2019, doi: 10.1007/s10853-019-03708-0.

K. Varner, “Emerging Contaminants: Extracting Micro & Nanomaterial Data from Soil Samples,” Microsc. Microanal, vol. 25, no. 2, p. 2019, 2019, doi: 10.1017/S1431927619004641.

R. Gao, Q. Dai, F. Du, D. Yan, and L. Dai, “C60-Adsorbed Single-Walled Carbon Nanotubes as Metal-Free, pH-Universal, and Multifunctional Catalysts for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution,” J. Am. Chem. Soc., vol. 141, no. 29, pp. 11658–11666, Jul. 2019, doi: 10.1021/JACS.9B05006/SUPPL_FILE/JA9B05006_SI_001.PDF.

N. D. Saxena and N. R. Chauhan, “Nanomaterial in Lubricants—A Real Approach,” in Advances in Interdisciplinary Engineering. Lecture Notes in Mechanical Engineering, 2019, pp. 847–854, doi: 10.1007/978-981-13-6577-5_82.

M. L. Casais-Molina, C. Cab, G. Canto, J. Medina, and A. Tapia, “Carbon Nanomaterials for Breast Cancer Treatment,” J. Nanomater., no. Special Issue: Application of Nanomaterials in Bioengineering, 2018, doi: 10.1155/2018/2058613.

D. Das, “Nanocrystalline Diamond: A High-Impact Carbon Nanomaterial for Multifunctional Applications Including as Nanofiller in Biopolymeric Matrices,” in Carbon-Based Nanofillers and Their Rubber Nanocomposites, Elsevier, 2019, pp. 123–181.

J. Qiu, X. Lai, H. Li, X. Zeng, and Y. Wu, “Fabrication of polymethylphenylsiloxane decorated C60 via π-π stacking interaction for reducing the flammability of silicone rubber,” Mater. Lett., vol. 229, pp. 85–88, 2018, doi: https://doi.org/10.1016/j.matlet.2018.06.120.

T. Benincori, E. Brenna, F. Sannicolò, L. Trimarco, P. Sozzani, and G. Zotti, “The first charm bracelet conjugated polymer: an electroconducting polythiophene with covalently bound fullerene moieties,” Angew. Chemie Int. Ed. English, vol. 35, no. 6, pp. 648–651, 1996, doi: https://doi.org/10.1002/anie.199606481.

M. Taki, S. Takigami, Y. Watanabe, Y. Nakamura, and J. Nishimurat, “Synthesis of polyesters containing the [60]fullerene moiety in the main chain,” Polym. J., vol. 29, no. 12, pp. 1020–1022, 1997, doi: https://doi.org/10.1295/polymj.29.1020.

M. Raissi et al., “Main-chain poly(fullerene) multiblock copolymers as organic photovoltaic donor–acceptors and stabilizers,” J. Mater. Chem. A, vol. 5, pp. 7533–7544, 2017, doi: 10.1039/c7ta01980g.

A. Isakova, C. Burton, D. J. Nowakowski, and P. D. Topham, “Diels-Alder cycloaddition and RAFT chain end functionality : an elegant route to fullerene end-capped polymers with control over molecular mass and architecture,” Polym. Chem., no. 8, pp. 2796–2805, 2017, doi: https://doi.org/10.1039/C7PY00394C.

G. A. Olah, I. Bucsi, D. S. Ha, R. Aniszfeld, C. S. Lee, and G. K. S. Prakash, “Friedel-Crafts Reactions of Buckminsterfullerene,” Fuller. Sci. Technol., vol. 5, no. 2, pp. 389–405, 1997, doi: 10.1080/15363839708011999.

S. Das and M. Presselt, “Progress and development in structural and optoelectronic tunability of supramolecular nonbonded fullerene assemblies,” J. Mater. Chem. C, vol. 7, pp. 6194–6216, 2019, doi: 10.1039/C9TC00889F.

C. J. Szwejkowski, A. Giri, R. Warzoha, B. F. Donovan, B. Kaehr, and P. E. Hopkins, “Molecular Tuning of the Vibrational Thermal Transport Mechanisms in Fullerene Derivative,” ACS Nano, vol. 11, pp. 1389–1396, 2017, doi: 10.1021/acsnano.6b06499.

J. F. Nierengarten, “Fullerodendrimers: Fullerene-Containing Macromolecules with Intriguing Properties,” in Dendrimers V. Topics in Current Chemistry, C. A. Schalley and F. Vögtle, Eds. Springer, Berlin, Heidelberg, 2003.

T. Gu et al., “Photovoltaic Devices from Fullerene–Oligophenyleneethynylene Conjugates,” Chemphyschem, vol. 3, no. 1, pp. 124–127, 2002, doi: https://doi.org/10.1002/1439-7641(20020118)3:1<124::AID-CPHC124>3.0.CO;2-6.

C. Martineau, P. Blanchard, D. Rondeau, J. Delaunay, and J. Roncali, “Synthesis and electronic properties of adducts of oligothienylenevinylenes and fullerene C60,” Adv. Mater., vol. 14, no. 4, pp. 283–287, 2002, doi: https://doi.org/10.1002/1521-4095(20020219)14:4<283::AID-ADMA283>3.0.CO;2-M.

E. Mignard, R. C. Hiorns, and B. François, “Synthesis and Characterization of Star Copolymers Consisting of Fullerene and Conjugated Polyphenylene: 6- star -C 60 [styrene−poly(1,4-phenylene)- block -polystyrene] and 6- star -C 60 [polystyrene- block -poly(1,4-phenylene)],” Macromolecules, vol. 35, no. 16, pp. 6132–6141, Jul. 2002, doi: 10.1021/ma020452r.

V. Anantharaj, L. Wang, T. Canteenwala, and L. Chiang, “Synthesis of starburst hexa(oligoanilinated) C60 using hexanitro[60]fullerene as a precursor,” Perkin Trans., vol. 22, pp. 3357–3366, 1999.

A. Rao, P. Eklund, J. Hodeau, L. Marques, and M. NunezRegueiro, “Infrared and Raman studies of pressure-polymerized C60.,” Phys. Rev. B, vol. 55, no. 7, pp. 4766–4773, 1997.

Y. Zou, X. Zhang, Y. Li, B. Wang, H. Yan, and J. Cui, “Bonding character of the boron-doped C60 films prepared by radio frequency plasma assisted vapor deposition,” J. Mater. Sci., vol. 37, no. 5, pp. 1043–1047, 2002.

T. Pusztai, G. Oszlanyi, G. Faigel, K. Kamaras, L. Granasy, and S. Pekker, “Bulk structure of phototransformed C60,” Solid State Commun, vol. 111, no. 11, pp. 595–599, 1999.

V. Blank, S. Buga, G. Dubitsky, N. Serebryanaya, M. Popov, and B. Sundqvist, “High-pressure polymerized phases of C60,” Carbon N. Y., vol. 36, no. 4, pp. 319–343, 1998.

C. Gimenez-Lopez Mdel et al., “Functionalized fullerenes in self-assembled monolayers,” Langmuir, vol. 27, no. 17, pp. 10977–10985, 2011, doi: 10.1021/la200654n.

H.-K. Yang, M. Khadem, O. V Penkov, and D. Kim, “Increased elasticity and damping capacity of diamond-like carbon coatings by immobilized C60 fullerene clusters,” Nanoscale, vol. 11, pp. 2863–2870, 2019, doi: 10.1039/C8NR09226E.

I. Donskyi, K. Achazi, V. Wycisk, C. Bottcher, and M. Adeli, “Synthesis, self-assembly, and photocrosslinking of fullerene-polyglycerol amphiphiles as nanocarriers with controlled transport properties,” Chem. Commun., vol. 52, no. 23, pp. 4373–4376, 2016, doi: 10.1039/c5cc08369a.

D. Pontiroli et al., “Ionic conductivity in the Mg intercalated fullerene polymer Mg2C60,” Carbon N. Y., vol. 51, pp. 143–147, 2013, doi: 10.1016/j.carbon.2012.08.022.

H. Zhu et al., “Intercalated aromatic molecule effect on super-hard C20 fullerene materials,” Diam. Relat. Mater., vol. 55, pp. 139–143, 2015, doi: 10.1016/j.diamond.2015.03.013.

M. von Delius and A. Hirsch, “Heterofullerenes: Doped Buckyballs,” in Chemical Synthesis and Applications of Graphene and Carbon Materials, M. Antonietti and K. Müllen, Eds. Weinheim, Germany: Wiley-VCH, 2017, pp. 191–210.

K. H. Lee et al., “Structures and energetics of borafullerene dimer conformers,” in Proceedings of the International Conference on Science and Technology of Synthetic Metals, ICSM 2002, Shanghai, China, June 29-July 5, 2002. Part I, 2002, pp. 723–724.

Y. García-Rodeja, M. Sola, and I. Fernández, “Influence of the Charge on the Reactivity of Azafullerenes,” Phys. Chem. Chem. Phys., vol. 20, pp. 28011–28018, 2018, doi: https://doi.org/10.1039/C8CP06031B.

H. Shinohara and N. Tagmatarchis, Endohedral Metallofullerenes: Fullerenes with Metal Inside, First Edit. John Wiley & Sons, 2015.

M. R. Cerón, V. Maffeis, S. Stevenson, and L. Echegoyen, “Endohedral fullerenes : Synthesis , isolation , mono- and bis -functionalization,” Inorganica Chim. Acta, vol. 468, pp. 16–27, 2017, doi: 10.1016/j.ica.2017.03.040.

L. K. Shrestha et al., “Fullerene Nanoarchitectonics: From Zero to Higher Dimensions,” Chem. An Asian J., vol. 8, no. 8, pp. 1662–1679, 2013, doi: https://doi.org/10.1002/asia.201300247.

S. S. Babu, H. Moehwald, and T. Nakanishi, “Recent Progress in Morphology Control of Supramolecular Fullerene Assemblies and Its Applications,” Chem. Soc. Rev., vol. 39, pp. 4021–4035, 2010, doi: 10.1039/c000680g.

P. Xue et al., “Nanofibers of Hydrogen-Bonded Two-Component Gel with Closely Connected p- and n-Channels and Photoinduced Electron Transfer,” ACS Appl. Mater. Interfaces, vol. 6, no. 23, pp. 21426–21434, 2014, doi: 10.1021/am506422m.

C. Zhang, J. Wang, J. Wang, M. Li, X. Yang, and H. Xu, “Supramolecular Gel-Assisted Formation of Fullerene Nanorods,” Chem. A Eur. J., vol. 18, pp. 14954–14956, 2012, doi: 10.1002/chem.201202721.

J. D. Megiatto, D. M. Guldi, and D. I. Schuster, “Design, synthesis and photoinduced processes in molecular interlocked photosynthetic [60]fullerene systems,” Chem. Soc. Rev., vol. 49, no. 1, pp. 8–20, 2020, doi: 10.1039/c9cs00638a.

M. A. Akhtar et al., “Poly ( ethylene oxide ) tethered trans-porphyrin : Synthesis , self-assembly with fullerene (C60) and DNA binding studies,” J. Mol. Liq., vol. 225, pp. 235–239, 2017, doi: 10.1016/j.molliq.2016.11.059.

S. Chugh, C. Biswas, L. Echegoyen, and A. B. Kaul, “Investigation of structural morphology and electrical properties of graphene-C 60 hybrids,” J. Vac. Sci. Technol. B, vol. 35, no. 3, pp. 1–5, 2017, doi: https://doi.org/10.1116/1.4982881.

E. Yekymov, E. A. Katz, and R. Yerushalmi-Rozen, “Preparation and stabilization of C60-carbon nanotube exohedral hybrids with controlled nano-morphology,” SN Appl. Sci., vol. 1, p. 473, 2019, doi: https://doi.org/10.1007/s42452-019-0483-7.

R. Sepahvand, S. Alihosseini, M. Adeli, and P. Sasanpour, “Fullerene-Gold Core-Shell Structures and their Self-Assemblies,” Int. J. Nannoscience, vol. 15, no. 3, pp. 1–9, 2016, doi: 10.1142/S0219581X16500290.

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of Postproduction Treatment on Plastic Solar Cells,” Adv. Funct. Mater., vol. 13, no. 1, pp. 85–88, Jan. 2003, doi: 10.1002/adfm.200390011.

G. Dennler et al., “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys., vol. 102, no. 5, p. 054516, Sep. 2007, doi: 10.1063/1.2777724.

T. Erb et al., “Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells,” Adv. Funct. Mater., vol. 15, no. 7, pp. 1193–1196, Jul. 2005, doi: 10.1002/adfm.200400521.

M. Al-Ibrahim et al., “The influence of the optoelectronic properties of poly(3-alkylthiophenes) on the device parameters in flexible polymer solar cells,” Org. Electron., vol. 6, no. 2, pp. 65–77, Apr. 2005, doi: 10.1016/j.orgel.2005.02.004.

M. Stephen et al., “Main-chain alternating fullerene and dye oligomers for organic photovoltaics,” Polym. Int., vol. 66, no. 3, pp. 388–398, 2017, doi: 10.1002/pi.5273.

A. Diacon, L. Derue, C. Lecourtier, O. Dautel, G. Wantz, and P. Hudhomme, “Cross-linkable azido C 60 -fullerene derivatives for efficient thermal stabilization of polymer bulk- heterojunction solar cells,” J. Mater. Chem. C, vol. 2, pp. 7163–7167, 2014, doi: 10.1039/C4TC01178C.

K. Liu et al., “Spatially Confined Growth of Fullerene to Super‐Long Crystalline Fibers in Supramolecular Gels for High‐Performance Photodetector,” Adv. Mater., vol. 31, no. 18, p. 1808254, 2019, doi: 10.1002/adma.201808254.

V. S. Nair, R. D. Mukhopadhyay, A. Saeki, S. Seki, and A. Ajayaghosh, “A π-gel scaffold for assembling fullerene to photoconducting supramolecular rods,” Sci. Adv., vol. 2, no. 9, p. e1600142, 2016, doi: 10.1126/sciadv.1600142.

E. Salim, S. R. Bobbara, A. Oraby, and J. M. Nunzi, “Copper oxide nanoparticle doped bulk-heterojunction photovoltaic devices,” Synth. Met., vol. 252, pp. 21–28, 2019, doi: 10.1016/j.synthmet.2019.04.006.

D. Chi, S. Qu, Z. Wang, and J. Wang, “High efficiency P3HT:PCBM solar cells with an inserted PCBM layer,” J. Mater. Chem. C, vol. 2, no. 22, pp. 4383–4387, Jun. 2014, doi: 10.1039/c4tc00003j.

D. Mühlbacher et al., “High Photovoltaic Performance of a Low-Bandgap Polymer,” Adv. Mater., vol. 18, no. 21, pp. 2884–2889, Nov. 2006, doi: 10.1002/adma.200600160.

J. Peet et al., “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols.,” Nat. Mater., vol. 6, no. 7, pp. 497–500, Jul. 2007, doi: 10.1038/nmat1928.

T. Dai et al., “Performance improvement of polymer solar cells with binary additives induced morphology optimization and interface modification simultaneously,” Sol. Energy, vol. 201, pp. 330–338, 2020, doi: https://doi.org/10.1016/j.solener.2020.03.021.

H. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, and Y. Yang, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics, vol. 3, no. November, pp. 649–653, 2009, doi: 10.1038/NPHOTON.2009.192.

A. D. Fenta, C.-F. Lu, A. T. Gidey, and C.-T. Chen, “High Efficiency Organic Photovoltaics with a Thick (300 nm) Bulk Heterojunction Comprising a Ternary Composition of a PFT Polymer−PC 71 BM Fullerene−IT4F Nonfullerene Acceptor,” ACS Appl. Energy Mater, vol. 4, pp. 5274–5285, 2021, doi: 10.1021/acsaem.1c00797.

J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and Characterization of Fulleroid and Methanofullerene Derivatives,” J. Org. Chem., vol. 60, no. 3, pp. 532–538, Feb. 1995, doi: 10.1021/jo00108a012.

F. Diederich and R. Kessinger, “Templated Regioselective and Stereoselective Synthesis in Fullerene Chemistry,” Acc. Chem. Res., vol. 32, no. 6, pp. 537–545, Jun. 1999, doi: 10.1021/ar970321o.

R. Muhammad Faisal, R. de Silva, and K. M. N. de Silva, “Density Functional Theory ( DFT ) simulations on fullerene / polymer blends for organic photovoltaic systems,” Int. J. Adv. Res. Ideas Innov. Technol., vol. 8, no. 1, pp. 576–586, 2022.

J. A. Moore, S. Ali, and B. C. Berry, “Stabilization of PCBM domains in bulk heterojunctions using polystyrene-tethered fullerene,” Sol. Energy Mater. Sol. Cells, vol. 118, pp. 96–101, 2013, doi: 10.1016/j.solmat.2013.07.044.

A. B. Sieval, N. D. Treat, D. Rozema, J. C. Hummelen, and N. Stingelin, “Diels-Alders adducts of C60 and esters of 3-(1-indenyl)-propionic acid: Alternatives for [60]PCBM in polymer:fullerene solar cells,” Chem. Commun., vol. 51, no. 38, pp. 8126–8129, May 2015, doi: 10.1039/c5cc01642h.

B. Kadem, R. K. Fakher Alfahed, A. S. Al-Asadi, and H. A. Badran, “Morphological, structural, optical, and photovoltaic cell of copolymer P3HT: ICBA and P3HT:PCBM,” Optik (Stuttg)., vol. 204, p. 164153, Feb. 2020, doi: 10.1016/j.ijleo.2019.164153.

H.-J. Lee, T. Arai, Y. Takeuchi, N. Koide, L. Han, and M. Shimizu, “Improvement of Efficiency of Polymer Solar Cells with Soluble Fullerene Derivatives,” 2006. doi: 10.1109/WCPEC.2006.279432.

R. B. Ross et al., “Endohedral fullerenes for organic photovoltaic devices,” Nat. Mater., vol. 8, pp. 208–212, 2009, doi: https://doi.org/10.1038/nmat2379.

B. A. Bregadiolli et al., “Towards the synthesis of poly(azafulleroid)s: main chain fullerene oligomers for organic photovoltaic devices,” Polym. Int., vol. 66, no. 10, pp. 1364–1371, 2017, doi: 10.1002/pi.5419.

J. A. Labastide et al., “Polymer Nanoparticle Superlattices for Organic Photovoltaic Applications,” J. Phys. Chem. Lett., vol. 2, no. 24, pp. 3085–3091, Dec. 2011, doi: 10.1021/jz2012275.

Downloads

Published

2022-04-30

How to Cite

Muhammad Faisal, R. (2022). Buckyball Derivatives as Acceptors in Organic Photovoltaics: A Review. International Journal of Formal Sciences: Current and Future Research Trends, 13(1), 119–149. Retrieved from https://ijfscfrtjournal.isrra.org/index.php/Formal_Sciences_Journal/article/view/646

Issue

Section

Articles