Exploring the Thiol (-SH)/Metal Interface

Authors

  • G.D.K.V. Maduwantha Department of Engineering Technology, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka,Faculty of Graduate Studies, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka,Center for Nanodevices Fabrication and Characterization, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
  • H.D.C.N. Gunawaradana Department of Engineering Technology, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka,Center for Nanodevices Fabrication and Characterization, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
  • D.K.A. Induranga Department of Engineering Technology, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka,Faculty of Graduate Studies, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka , Center for Nanodevices Fabrication and Characterization, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
  • K.R.Koswattage Department of Engineering Technology, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka, Center for Nanodevices Fabrication and Characterization, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka

Keywords:

Cysteine, thiol bond, photoelectron spectroscopy

Abstract

L-cysteine is one of the promising amino-acid that has drawn an immense interest in bio-electronics applications. Through multiple functional groups, it acts as a linker between proteins of biomolecules and metal electrodes of inorganic metals. Hence the interaction between metal and L-cysteine considered to be an area that a greater understanding is required. Photoelectron spectroscopic methods have been successfully used to resolve electronic configurations at these interfaces. When using these spectroscopic methods, it starts with thin films at around 1 - 2 angstroms and then reaching bulky layers so that the change of interaction is revealed through photoelectron kinetic energy. In many cases single crystals and in some cases poly-crystals of metals. Here we review metal-cysteine interaction through the thiol (-SH) and noble metal bond in brief.

References

I. Willner and E. Katz, “Integration of layered redox proteins and conductive supports for bioelectronic applications,” Angewandte Chemie International Edition, vol. 39, no. 7, pp. 1180–1218, 2000. doi: https://doi.org/10. 1002/(SICI)1521-3773(20000403)39:7<1180::AID-ANIE1180>3.0.CO; 2-E.

S. A. Umoren and U. M. Eduok, “Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review,” Carbohydrate polymers, vol. 140, pp. 314–341, 2016. doi: 10.1016/j.carbpol. 2015.12.038.

G.-P. Nikoleli, C. G. Siontorou, M.-T. Nikolelis, S. Bratakou, and D. K. Bendos, “Recent lipid membrane-based biosensing platforms,” Applied Sciences, vol. 9, no. 9, p. 1745, Apr. 2019. doi: 10.3390/app9091745.

Y. Wu and S. Hu, “Biosensors based on direct electron transfer in redox proteins,” Microchimica Acta, vol. 159, no. 1, pp. 1–17, 2007. doi: 10.1007/ s00604-007-0749-4.

W. B. Frommer, M. W. Davidson, and R. E. Campbell, “Genetically encoded biosensors based on engineered fluorescent proteins,” Chemical Society Reviews, vol. 38, no. 10, pp. 2833–2841, 2009. doi: 10.1039/b907749a.

Z. Siwy, L. Trofin, P. Kohli, L. A. Baker, C. Trautmann, and C. R. Martin, “Protein biosensors based on biofunctionalized conical gold nanotubes,” Journal of the American Chemical Society, vol. 127, no. 14, pp. 5000–5001, 2005. doi: 10.1021/ja043910f.

W. Zhang and G. Li, “Third-generation biosensors based on the direct electron transfer of proteins,” Analytical sciences, vol. 20, no. 4, pp. 603–609, 2004. doi: 10.2116/analsci.20.603.

K. R. Koswattage, H. Kinjo, Y. Nakayama, and H. Ishii, “Interface electronic structures of the l-cysteine on noble metal surfaces studied by ultraviolet photoelectron spectroscopy,” e-Journal of Surface Science and Nanotechnology, vol. 13, no. 0, pp. 373–379, 2015. doi: 10.1380/ejssnt.2015.373.

S. Iqbal, “Spatial charge separation and transfer in l-cysteine capped NiCoP/CdS nano-heterojunction activated with intimate covalent bonding for high-quantumyield photocatalytic hydrogen evolution,” Applied Catalysis, B: Environmental, vol. 274, p. 119097, Oct. 2020. doi: 10.1016/j.apcatb.2020.119097.

L. B. Poole, “The basics of thiols and cysteines in redox biology and chemistry,” en, Free Radical Biology & Medicine, vol. 80, pp. 148–157, Mar. 2015.

doi: 10.1016/j.freeradbiomed.2014.11.013.

S. Fischer, A. C. Papageorgiou, M. Marschall, et al., “L-cysteine on ag(111): A combined stm and x-ray spectroscopy study of anchorage and deprotonation,” Journal of Physical Chemistry C, vol. 116, no. 38, pp. 20356–20362, 2012. doi: 10.1021/jp305270h. eprint: https://doi.org/10.1021/ jp305270h.

M. F. L’Annunziata, “Electromagnetic radiation,” in Radioactivity, Elsevier, 2016, pp. 269–302. doi: 10.1016/b978-0-444-63489-4.00008-3.

R. Tran, Z. Xu, B. Radhakrishnan, et al., “Surface energies of elemental crystals,” Scientific Data, vol. 3, no. 1, Sep. 2016. doi: 10.1038/sdata. 2016.80.

M. Grobosch and M. Knupfer, “Electronic properties of the interface between the organic semiconductor -sexithiophene and polycrystalline palladium,” Organic Electronics, vol. 9, no. 5, pp. 767–774, Oct. 2008. doi: 10.1016/j. orgel.2008.05.019.

A. Kühnle, T. R. Linderoth, M. Schunack, and F. Besenbacher, “L-cysteine adsorption structures on au (111) investigated by scanning tunneling microscopy under ultrahigh vacuum conditions,” Langmuir, vol. 22, no. 5, pp. 2156–2160, 2006. doi: 10.1021/la052564s.

A. Dakkouri, D. Kolb, R. Edelstein-Shima, and D. Mandler, “Scanning tunneling microscopy study of l-cysteine on au (111),” Langmuir, vol. 12, no. 11, pp. 2849–2852, 1996. doi: 10.1021/la9510792.

J. Zhang, Q. Chi, J. U. Nielsen, E. P. Friis, J. E. T. Andersen, and J. Ulstrup, “Two-dimensional cysteine and cystine cluster networks on au(111) disclosed by voltammetry and in situ scanning tunneling microscopy,” Langmuir, vol. 16, no. 18, pp. 7229–7237, Aug. 2000. doi: 10.1021/la000246h.

T. Ishida, N. Choi, W. Mizutani, et al., “High-resolution x-ray photoelectron spectra of organosulfur monolayers on au(111): s(2p) spectral dependence on molecular species,” Langmuir, vol. 15, no. 20, pp. 6799–6806, Jul. 1999. doi: 10.1021/la9810307.

P. W. Anderson, “Localized magnetic states in metals,” Physical Review, vol. 124, no. 1, p. 41, 1961. doi: https://doi.org/10.1103/PhysRev.124. 41.

R. Gurney, “Theory of electrical double layers in adsorbed films,” Physical Review, vol. 47, no. 6, p. 479, 1935. doi: https://doi.org/10.1103/ PhysRev.47.479.

D. Newns, “Self-consistent model of hydrogen chemisorption,” Physical Review, vol. 178, no. 3, p. 1123, 1969. doi: 10.1103/physrev.178.1123.

R. Masel, Principles of Adsorption and Reaction on Solid Surfaces (Wiley Series in Chemical Engineering). Wiley, 1996, isbn: 9780471303923.

N. B. Luque and E. Santos, “Ab initio studies of ag–s bond formation during the adsorption ofscpl/scp-cysteine on ag(111),” Langmuir, vol. 28, no. 31, pp. 11472–11480, Jul. 2012. doi: 10.1021/la302376w.

J. A. Larsson, M. Nolan, and J. C. Greer, “Interactions between thiol molecular linkers and the au13 nanoparticle,” Journal of Physical Chemistry B, vol. 106, no. 23, pp. 5931–5937, 2002. doi: 10.1021/jp014483k. eprint: https://doi.org/10.1021/jp014483k.

L. Wang, G. M. Rangger, Z. Ma, et al., “Is there a au–s bond dipole in self-assembled monolayers on gold?” Physical Chemistry Chemical Physics, vol. 12, no. 17, pp. 4287–4290, 2010. doi: 10.1039/b924306m.

F. Tielens and E. Santos, “Aus and sh bond formation/breaking during the formation of alkanethiol sams on au (111): A theoretical study,” Journal of Physical Chemistry C, vol. 114, no. 20, pp. 9444–9452, 2010. doi: 10.1021/ jp102036r.

J. Gottschalck and B. Hammer, “A density functional theory study of the adsorption of sulfur, mercapto, and methylthiolate on au(111),” Journal of Chemical Physics, vol. 116, no. 2, pp. 784–790, Jan. 2002. doi: 10.1063/1. 1424292.

Z. Yang, R. Wu, and J. A. Rodriguez, “First-principles study of the adsorption of sulfur on pt (111): S core-level shifts and the nature of the pt-s bond,” Physical Review B, vol. 65, no. 15, p. 155409, 2002. doi: 10.1103/ physrevb.65.155409.

K. Ogawa, T. Tsujibayashi, K. Takahashi, et al., “Photoelectron spectroscopic study on the electronic structures of the dental gold alloys and their interaction with L-cysteine,” Journal of Applied Physics, vol. 110, no. 10, pp. 103718–103718, 2011. doi: 10.1063/1.3662146.

V. D. Renzi, “Understanding the electronic properties of molecule/metal junctions: The case study of thiols on gold,” Surface Science, vol. 603, no. 1012, pp. 1518–1525, Jun. 2009. doi: 10.1016/j.susc.2008.10.063.

V. D. Renzi, L. Lavagnino, V. Corradini, R. Biagi, M. Canepa, and U. d. Pennino, “Very Low Energy Vibrational Modes as a Fingerprint of H-Bond Network Formation: l-Cysteine on Au(111),” Journal of Physical Chemistry C, vol. 112, no. 37, pp. 14439–14445, Sep. 2008, issn: 1932-7447. doi: 10. 1021/jp802206r.

B. Kennedy and A. Lever, “Studies of the metal–sulfur bond. complexes of the pyridine thiols,” Canadian Journal of Chemistry, vol. 50, no. 21, pp. 3488–3507, 1972. doi: 10.1139/v72-563.

T. Laiho, J. Leiro, M. Heinonen, S. Mattila, and J. Lukkari, “Photoelectron spectroscopy study of irradiation damage and metal–sulfur bonds of thiol on silver and copper surfaces,” Journal of Electron Spectroscopy and Related Phenomena, vol. 142, no. 2, pp. 105–112, 2005, issn: 0368-2048. doi: https: //doi.org/10.1016/j.elspec.2004.10.001.

P. Bazylewski, R. Divigalpitiya, and G. Fanchini, “In situ raman spectroscopy distinguishes between reversible and irreversible thiol modifications in lcysteine,” RSC advances, vol. 7, no. 5, pp. 2964–2970, 2017. doi: https: //doi.org/10.1039/C6RA25879D.

H.-T. Rong, S. Frey, Y.-J. Yang, et al., “On the importance of the headgroup substrate bond in thiol monolayers: A study of biphenyl-based thiols on gold and silver,” Langmuir, vol. 17, no. 5, pp. 1582–1593, 2001. doi: 10.1021/ la0014050.

G. Dodero, L. D. Michieli, O. Cavalleri, et al., “L-cysteine chemisorption on gold: An XPS and STM study,” Colloids and Surfaces, A: Physicochemical and Engineering Aspects, vol. 175, no. 1-2, pp. 121–128, Dec. 2000. doi: 10.1016/s0927-7757(00)00521-5.

E. Kozma, F. Galeotti, G. Grisci, et al., “Perylene diimide cysteine derivatives self-assembled onto (111) gold surface: Evidence of ordered aggregation,” Surface Science, vol. 675, pp. 15–25, Sep. 2018. doi: 10.1016/j. susc.2018.04.008.

M. Honda, Y. Baba, N. Hirao, and T. Sekiguchi, “Observation of au-s interface of l-cysteine on gold surface,” e-Journal of Surface Science and Nanotechnology, vol. 7, pp. 110–114, 2009. doi: 10.1380/ejssnt.2009.110.

M. M. Beerbom, R. Gargagliano, and R. Schlaf, “Determination of the electronic structure of self-assembled scpl/scp-cysteine/au interfaces using photoemission spectroscopy,” Langmuir, vol. 21, no. 8, pp. 3551–3558, Mar. 2005. doi: 10.1021/la040083n.

K. R. Koswattage and H. Ishii, “Photoemission investigation of interaction between l-cysteine and silver surface,” Surface and Interface Analysis, vol. 52, no. 8, pp. 513–517, Mar. 2020. doi: 10.1002/sia.6771.

K. R. Koswattage, C. J. Liyanage, and G. D. K. V. Maduwantha, “Ultraviolet photoelectron spectroscopic study on the interface electronic structure of the l-cysteine on pd surface,” Surface and Interface Analysis, vol. 54, no. 5, pp. 561–566, Jan. 2022. doi: 10.1002/sia.7065.

Downloads

Published

2022-12-28

How to Cite

G.D.K.V. Maduwantha, H.D.C.N. Gunawaradana, D.K.A. Induranga, & K.R.Koswattage. (2022). Exploring the Thiol (-SH)/Metal Interface. International Journal of Formal Sciences: Current and Future Research Trends, 16(1), 1–11. Retrieved from https://ijfscfrtjournal.isrra.org/index.php/Formal_Sciences_Journal/article/view/769

Issue

Section

Articles